Cập nhật nội dung chi tiết về 143 Bài Tập Giới Hạn Dãy Số mới nhất trên website Asianhubjobs.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất.
143 Bài tập Giới hạn dãy số – Hàm số
I HN DÃY S 3 3 6n 2n 1 lim n 2n − + − 2 2 1 n 2n lim 5n n − + + 3 2 3 2n 4n 3n 3 lim n 5n 7 − + + − + 2 4 2n n 2 lim 3n 5 − + + + 2 3 2 n 4n 5 lim 3n n 7 + − + + 5 4 3 2 n n n 2 lim 4n 6n 9 + − − + + 2 2 7n 3n 2 lim n 5 − + + 3 2 3n 2n 1 lim 2n n + − − 3 2 2 2n 1 5n lim 5n 12n 3 − + ++ 5 3 5 4 3n 7n 11 lim n n 3n − + − + − 2 6 5 2n 3 lim n 5n − + 2 2 2n n lim 1 3n − − 3 3n n lim n 2 + + 4 2 2n 3n 2 lim 2n n 3 + − − + 3 6 3n 7n 5n 8 lim n 12 − − + + 2n 1 n 1 lim 3n 2 + − + + ( )3lim 3n 7n 11− + 4 2lim 2n n n 2− + + 3 3lim 1 2n n+ − 2 1 2 ... n lim n + + + 2 n 2 4 ... 2n lim 3n n 2 + + + + − 3 3 3 4 3 1 2 ... n lim n n 3n 2 + + + + + + 2 n. 1 3 ... (2n 1) lim 2n n 1 + + + − + + 3 3 3 2 1 2 ... n lim 11n n 2 + + + + + ( ) 22 3 3 3 n n 11 2 ... n 4 + + + + = 2 n 2 n 2 2 2 1 ... 3 3 3 lim 1 1 1 1 ... 5 5 5 + + + + + + + + n n n 4 lim 2.3 4+ n n 3 1 lim 2 1 + − n n n 3 2.5 lim 7 3.5 − + n n n n 4 5 lim 2 3.5 − + n n n 1 n 1 ( 3) 5 lim ( 3) 5+ + − + − + ( )lim 3n 1 2n 1− − − ( )lim n 1 n n+ − ( )2lim n n 1 n+ + − ( )2 2lim n n n 1− + ( )2lim n n 2 n 1+ + − + ( )lim n 3 n 5+ − − ( )2lim n n 3 n− + − 1lim n 2 n 1+ − + GII HN HÀM S 1. ( )2 2 lim 3x 7x 11 x→ + + 2. ( ) 21 7x 11 lim 4 2x x x→ + + 3. ( )( ) x 2 3x 1 2 3x lim x 1→− + − + 4. 0 7x 11 lim 2 1 x x x→ + − 5. 2 3 lim 4 x x → − 6. 2x 9 x 3 lim 9x x→ − − 7. 2 3x 3x x 5 lim x 2→−∞ − + − 8. 4 4 2x 2x 3x 5 lim x 2x→−∞ − + − 9. 6 5 3x 3x 2x 5 lim 3x 2→+∞ − + − 10. 6 3x x 5x 1 lim 5x 2→−∞ − + − 11. 2 3 2x x 5 lim 6x 3x 2→−∞ + − + 12. x 3 3 x lim 3 x+→ − − 13. x 3 3 x lim 3 x−→ − − 14. x 3 3 x lim 3 x→ − − 15. x 0 x 2 x lim x x+→ + − 16. 2 x 2 4 x lim 2 x−→ − − 17. 3 2x 2 x 2 2 lim x 2→− + − 18. 4 2x 3 x 27x lim 2x 3x 9→ − − − 19. 4 2x 2 x 16 lim x 6x 8→− − + + 20. ( )( ) 5 3 3 2 3x 2x x 1 lim 2x 1 x x→+∞ + − − + 21. 2 x x x 2x lim 2x 3→−∞ + + + 22. ( ) 4 2x x lim x 1 2x x 1→+∞ + + + 23. ( )3 2 x lim 2x 5x 3x 1 →+∞ − + − 24. 4 2 x lim 2x 5x 1 →+∞ − + 143 BAI TAP GIOI HAN DAY SO - HAM SO - WWW.MATHVN.COM 1 www.MATHVN.com 25. x 2 2x 1 lim x 2+→ + − 26. x 2 2x 1 lim x 2−→ + − 27. ( )3 2 x lim 2x 5x 3x 1 →+∞ − + − 28. 3 2x x 5 lim x 1→+∞ − + 29. 3 2x 2 x 8 lim x 4→ − − 31. ( ) ( ) 2 2 x 3 2x 5x 3 lim x 3−→ − + − + 32. 3 2x 0 x 1 1 lim x x→ + − + 33. 2 3x 2x x 10 lim 9 3x→+∞ + + − 34. 3 2x 3 x 3 3 lim x 3→− + − 35. 2x 4 x 2 lim x 4x→ − − 36. 2x 1 x 1 lim x x+→ − − 37. 2 x 0 x x 1 1 lim 3x→ + + − 38. 3x 3 3 x lim 27 x − → − − 39. 3 2x 2 x 8 lim x 2x+→ − − 2 2x 2 x 3x 10 lim 3x 5x 2→ + − − − 2 x 2 x 4 lim x 2→ − − 2 2x 1 x 4x 3 lim (x 1)→ − + − x 1 x 1 lim 1 x→ − − 2 x 3 x 2x 15 lim x 3→ + − − 2 x 5 x 2x 15 lim x 5→− + − + 3 x 1 x 1 lim x(x 5) 6→ − + − 2 2x 4 x 3x 4 lim x 4x→− + − + 2 2x 4 x 5x 6 lim x 12x 20→− − + − + 3 2 2x 2 x 3x 2x lim x x 6→− + + − − 4 2x 1 x 1 lim x 2x 3→ − + − 3 2 2x 2 x 4x 4x lim x x 6→− + + − − 2 x 2 x 5 3 lim . x 2→ + − − 4 x 7 x 9 2 lim x 7→ + − − x 5 5 x lim 5 x→ − − x 2 3x 5 1 lim x 2→ − − − x 0 x lim 1 x 1→ + − 2x 1 x 1 lim 6x 3 3x→− + + + 2 x 0 1 x x 1 lim x→ + + − 2x 5 x 4 3 lim x 25→ + − − ( ) 2 x 0 1 2x x 1 x lim x→ − + − + x 3 x 3 lim 2x 10 4→ − + − x 6 x 2 2 lim x 6→ − − − 2x 1 2x 3x 1 lim x 1→ − + − 2x 1 x 1 lim x 2x 3→ − + − x 0 5 x 5 x lim x→ + − − x 0 1 x 1 x lim x→ + − − x 1 2x 1 x lim x 1→ − − − 2 x 0 1 x x x 1 lim x→ + − + + 2 2x 1 3x 2 4x x 2 lim x 3x 2→ − − − − − + 2 x 0 1 3x x 1 x lim x→ − + − + x 4 3 5 x lim 1 5 x→ − + − − x 2 x x 2 lim 4x 1 3→ − + + − 2 x 1 x x lim x 1→ − − 3 2x 1 x 1 lim x 3 2→− + + − 2 2x 0 4 x 2 lim 9 x 3→ − − − − x 9 7 2x 5 lim x 3→ + − − 2 2x x 3x 10 lim 3x 5x 2→+∞ + − − − 2 3x x 4 lim x 2→−∞ − − 2 2x x 4x 3 lim (x 1)→+∞ − + − 2 x x 2x 15 lim x 5→−∞ + − + 2 1 lim ( 5) 6x x x x→+∞ − + − 2 4x x 3x 4 lim x 4x→−∞ + − + 4 3 2x x 5x 6 lim x 12x 20→+∞ − + − + 3 2 5x x 3x 2x lim x x 6→−∞ + + − − 2 1 lim 2 3x x x x→−∞ − + − 3 6 4 2x x 4x 4 lim x x 6→−∞ − + − − x 2 8 2x 2 lim x 2+→− + − + x 0 2 x 3x lim 3 x 2x+→ − − ( ) 2 3x 1 ; x 1 f x x 1 ; x 1 − ≤ = x 1 lim f (x) → 2mx ; x 2 f (x) 3 ; x 2 ≤ = > x 2 lim f (x) → 2x 5x 6 ; x 2 f (x) mx 4 ; x 2 = + ≤ Tìm m hàm s có gii hn khi x 2→ ( )2 2 x lim x x 1 x 2 →+∞ + − − ( )2 2 x lim x 7x 1 x 3x 2 →+∞ − + − − + ( )2 2 x lim x 4x 1 x 9x →+∞ − + − − ( )2 2 x lim x 2x 1 x 6x 3 →+∞ − + − − + ( )2lim 4 7 2 x x x x →+∞ − − − + 2 www.MATHVN.com 60 BÀI TẬP GIỚI HẠN DÃY SỐ chúng tôi 1, 2 2 n 2n 1 lim 3n n 3 - + + - 2, ( )( ) 2 n 1 n 2 lim n 3n 1 + + - + - 3, ( )( ) ( )( ) n 1 2n 5 lim 3n 1 n 2 + - - + 4, 2 n n n 1 lim n 3 - + + 5, 3 3 2 n 4n 1 lim 4n n 2 - + - + - 6, ( )n n 3 lim n 1 + + - 7, 4n 6 lim n 1 + - 8, ( ) ( ) 2 2 n 1 3n lim 2n 1 + - - 9, ( ) ( ) ( ) ( ) 4 4 4 4 n 1 n 1 lim n 1 n 1 + - - + + - 10, ( )( )2 3 n 1 3n 2 lim n 2n 1 - + - + - 11, ( )( )2 2 4 3 n 3n 6 2n n 1 lim 8n 4n 1 + + - - + - 12, ( )( ) ( )( ) 2 2 3 n 3 2n 4n 1 lim 6n 2n 1 2n 1 - - + - + - - 13, 24n n 1 lim n 3 + + - - 14, 2n 1 3n 1 lim 6n n 1 + - - - - + 15, 3 2n n 2n 4n lim 2n n 4n 1 + - - - - + 16, ( )2007 2007 2000 2n 1 1 lim n 3n - - - 17, ( )( )( ) ( ) 2 3 32 3n 1 n 2 3n 1 lim 2n 1 - + - - + 18, n 1 2 lim n 3 + - + 19, 3 38n 2n 1 3n lim 2n 4 n 7 + - + - + 20, 2 22n 1 n 1 lim n 1 + - + + 21, 2 1 2 3 ... n lim n + + + + 22, ( ) 2 n 1 3 5 ... 2n 1 lim 3n n 1 + + + + + - + 23, 3 2n 1 n 2n lim 3n n 2n 1 + - + - + 24, ( )2 2 2 n 3n 1 n 2n 1 lim 5n 3n 2 + + + - - + 25, 3 3 2n 3n 1 3n 4 lim 3n 1 + + - + - 26, ( )( ) ( ) ( ) 2 2 4 4 5n 3n 1 2n 6 lim 2n 1 3n 1 + - + + - - 27, ( )n 2 n 3n 1 lim n n 2n 6 + - - + 28, ( )2 5 4n 1 2n 4n 2 lim n 3n 1 + - + + - 29, ( )2 2 n n 3 4n 7 lim 2n 4 - + - + 30, ( ) ( ) 3 3 2 2 n 7 4n 1 2n 1 lim 3n 2 + - + - - 31, n n n 2 3 lim 3 1 + + 32, n 1 n 1 n n 2 3 lim 2 3 + ++ + 33, ( ) ( ) n n n n 1 2 3 lim 2 3 + - + - - 34, n n n 1 n 2 5 3 lim 5 3+ + - + 35, ( )2lim n 3n 10- - 36, ( )3lim n 4n 1- + - 37, ( )4lim 2n 3 n 1- - + 38, ( )3lim 2n n 1- + 39, ( )3lim n n 1- + 40, 22n n lim n 1 - + 41, 2 3 3n 3n 1 lim 2n 2n 1 + - - + 42, ( )2n 1 n lim 3n 2 - - + 43, ( )3 3 4 2n 1 n 2n 1 lim 2n 3n 2 - + - + + - 44, ( ) ( ) ( ) 2 42 3 2n 1 n 1 lim 4n 3 - - + + 45, n n 3n 1 lim 5n 7 + - + 46, ( )2lim n n 5 n+ + - 47, ( )2lim 4n 3n 1 2n- + - 48, ( )2lim n 2 n n+ - 49, ( )2lim n 2 n+ - 50, ( )2lim n 3n 1 2n- + - 51, ( )2lim n 4n 2 n 2+ + - + 52, ( )2 2lim 2n 1 2n n 1+ - + + 53, ( )lim n n 3 n 1+ - + 54, ( )lim n 5 2n 3 2n 1+ + - - 55, 2 1 lim n 1 n 2+ - + 56, 2n 1 n lim 2n 5 n 2 + - - - + 57, ( )3n 2 2n 1 n 2 lim n 3 + - - - + 58, ( )3 3 2lim n 2n 1 n+ + - 59, ( )32 3 2lim n 3n n n 2n+ + + - 60, ( )3 3 2 2lim n 3n 1 n 2n+ + - +
Tài liệu đính kèm:
Bai_tap_ve_gioi_han_cua_day_so_ham_so.pdf
Bài Tập Về Giới Hạn Của Dãy Số
4.1 Biết rằng dãy số có giới hạn là 0.
( 4.2 Cho biết dãy số có giới hạn hữu hạn, còn dãy số không có giới hạn hữu hạn. Dãy số + ) có thể có giới hạn hữu hạn không ?
lim ≤ a) Cho hai dãy số và . Biết = − ∞ và với mọi n. Có kết luận gì về giới hạn của dãy khi n → + ∞ ?
b) Tìm lim với = − n !
4.5 Tính các giới hạn sau :
4.8 Cho dãy số xác định bởi công thức truy hồi :
Chứng minh rằng có giới hạn hữu hạn khi n → + ∞ Tìm giới hạn đó.
1 , − 1/ 2 , 1/ 4 , − 1/ 8 , . . . , . . 4.9 Tính tổng của cấp số nhân lùi vô hạn .
4.10 Tìm số hạng tổng quát của cấp số nhân lùi vô hạn có tổng bằng 3 và công bội q = 2/3
4.11 Cho dãy số có số hạng tổng quát là :
= sin α + α + + . . . α với α ≠ π/ 2 + k/ π .
Tìm giới hạn của
4.12 Cho số thập phân vô hạn tuần hoàn a = 34,121212… (chu kì là 12). Hãy viết a dưới dạng một phân số.
4.13 Giới hạn của dãy số với = là :
D. Không tồn tại .
4.15 lim ( – ) n bằng :
4.16 Nếu S = 1 + 0,9 + + + …. + + … thì :
D. Không thể tính được S.
Chuyên Đề Giới Hạn Của Dãy Số Và Hàm Số
§1. Dãy số có giới hạn 0:Định nghĩa: thì (un (< (Một số dãy có giới hạn 0:
* Định lý 1: Hai dãy số (un) và (vn) Nếu (un( ( vn (n và limvn = 0 thì limun = 0. * Định lý 2: Nếu (q( < 1 thì limqn = 0. §2. Dãy số có giới hạn hữu hạn:Định nghĩa: limun = L ( lim(un – L) = 0.Định lý 1: Giả sử limun = L. Khi đó:lim(un( = (L( và Nếu un ( 0 (n thì L ( 0 và Định lý 2: Nếu limun = L, limvn = M và c là một hằng số. Khi đó:lim(un + vn) = L + M; lim(un – vn) = L – M; lim(un.vn) = L.M; lim(cun) = cL; (nếu M ≠ 0).Tổng của cấp số nhân lùi vô hạn: Bài tập áp dụng:1. Dùng định nghĩa, chứng minh các dãy sau có giới hạn 0: với a là số thực hữu hạn, k là số tự nhiên hữu hạn
7. Tìm các giới hạn limun với:
8. Chứng minh rằng 9. Cho dãy xác định bởi: a) CMR: với mọi n thì
b) Từ đó suy ra limun = 0.10. Cho dãy xác định bởi: a) CMR: với mọi n thì
b) Từ đó suy ra limun = 0.11. Tìm giới hạn của các dãy sau:
12. Cho dãy xác định bởi: a) CMR: với mọi n thì
Bài tập áp dụng:
3. Cho một hình vuông cạnh a. Nối trung điểm của bốn cạnh ta được một hình vuông mới nhỏ hơn. Lại làm như vậy đối với hình vuông mới. Cứ tiếp tục như thế mãi. Tìm giới hạn của tổng các diện tích của tất cả các hình vuông tạo thành.4. Tìm giới hạn sau: với (a( < 1 và (b( < 1.5. Tìm các giới hạn:
6. Tìm các giới hạn sau:
7. CMR: mỗi dãy số sau đây đều có giới hạn và tìm giới hạn đó:
§4. Giới hạn của hàm số:Định nghĩa 1: ( ( dãy (xn), limxn = x0 ta đều có limf(xn) = L. Trong đó x0 (
60 Bài Tập Trắc Nghiệm Giới Hạn Của Dãy Số Có Đáp Án Chi Tiết (Phần 1)
Bài 1: bằng:
Bài 2: bằng:
Hiển thị đáp án
Đáp án: C
Cách 1
Đáp án C
Cách 2 (phương pháp loại trừ). Từ các định lí ta thấy:
Các dãy ở phương án A,B đều bằng 0, do đó loại phương án A,B
Vì
Do đó loại phương án D
Chọn đáp án C
Bài 4: Tổng của cấp số nhân vô hạn: là:
Bài 5: Tìm giá trị đúng của
Hiển thị đáp án
Đáp án: C
Ta có:
là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 1 và công bội là 1/2. Khi đó:
Vậy S = 2√2.
Chọn đáp án C.
Bài 6: Tổng của cấp số nhân vô hạn: là:
Bài 7: có giá trị bằng:
Hiển thị đáp án
Đáp án: D
Bài 8: Tính giới hạn:
Bài 9: bằng:
Bài 10: bằng:
Hiển thị đáp án
Đáp án: A
Cách 1. Sử dụng nhận xét trên, vì bậc của tử thức nhỏ hơn bậc của mẫu thức nên kết quả
Đáp án là A
Cách 2. Chia tử và mẫu của phân thức cho n 4(n 4 là luỹ thừa bậc cao nhất của n trong tử và mẫu của phân thức) rồi tính. Đáp án A
Bài 11: Tính giới hạn:
Bài 12: Tính giới hạn:
Hiển thị đáp án
Đáp án: D
Ta có:
Khi đó
Chọn đáp án D
Bài 13: Tổng của cấp số nhân vô hạn là:
Bài 14: Tổng của cấp số nhân vô hạn là:
Hiển thị đáp án
Đáp án: B
Cách 1. Sử dụng nhận xét trên, vì bậc của tử thức lớn hơn bậc của mẫu thức, hệ số luỹ thừa bậc cao nhất của n cả tử và mẫu là số dương nên kết quả
Đáp án là B
Cách 2. Chia tử và mẫu của phân thức cho n 4(n 4 là luỹ thừa bậc cao nhất của n trong tử và mẫu của phân thức) rồi tính. Đáp án B
Bài 16: Tính giới hạn:
Bài 17: Cho dãy số (u n) với . Tính limu n
Hiển thị đáp án
Đáp án: A
u n là tổng n số hạng đầu tiên của một cấp số nhân có u 1 = 1/2 và q = (-1)/2.
Do đó
Đáp án A
Bài 18: Tổng của cấp số nhân vô hạn: là:
Bài 19: Tính = ?
Bài 20: có giá trị bằng:
A. 0
B. 1
C. 2/3
D. 5/3
Hiển thị đáp án
Đáp án: A
Cách 1.
Tính được suy ra đáp án là A
Cách 2. Sử dụng nhận xét trên, vì bậc của tử thức lớn hơn bậc của mẫu thức, hệ số luỹ thừa bậc cao nhất của n cả tử và mẫu thức bằng nhau và tỉ số hệ số của cúng bằng 1/5. Chỉ có dãy ở phương án A thoả mãn. Vậy đáp án là A.
Bài 21: Tính
Hiển thị đáp án
Đáp án: C
Ta có
Mà
Chọn đáp án C
Bài 22: Tính giới hạn
Hiển thị đáp án
Đáp án: A
Ta có
A. Cấp số nhân lùi vô hạn (u n) có công bội q thì tổng
B. Cấp số nhân lùi vô hạn (u n) có u 1 = 4, S = 4/3 ⇒
Bài 24: Tính giới hạn:
Bài 25: có giá trị bằng:
A. 1
B. 2
C. 4
D. +∞
Bài 26: Tính
Bài 27: bằng:
A. 0
B. 1/4
C. 1/2
D. +∞
D. 50; 25; 12,25; 6,125;3,0625
Hiển thị đáp án
Đáp án: C
Áp dụng công thức :
Suy ra 5 số hạng đầu tiên của dãy số: 50; 25; 12,5; 6,25; 3,125
Chọn C
Bài 29: Tính
Bài 30: Cho dãy số (u n) với . Mệnh đề nào sau đây là mệnh đề đúng?
KHÓA HỌC GIÚP TEEN 2004 ĐẠT 9-10 THI THPT QUỐC GIA
Đăng ký khóa học tốt 11 dành cho teen 2k4 tại chúng tôi
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.
Nhóm học tập facebook miễn phí cho teen 2k4: chúng tôi
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:
Bạn đang đọc nội dung bài viết 143 Bài Tập Giới Hạn Dãy Số trên website Asianhubjobs.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!