Đề Xuất 4/2023 # 21 Dạng Bài Tập Viết Phương Trình Mặt Phẳng Trong Đề Thi Đại Học Có Lời Giải # Top 8 Like | Asianhubjobs.com

Đề Xuất 4/2023 # 21 Dạng Bài Tập Viết Phương Trình Mặt Phẳng Trong Đề Thi Đại Học Có Lời Giải # Top 8 Like

Cập nhật nội dung chi tiết về 21 Dạng Bài Tập Viết Phương Trình Mặt Phẳng Trong Đề Thi Đại Học Có Lời Giải mới nhất trên website Asianhubjobs.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất.

21 dạng bài tập Viết phương trình mặt phẳng trong đề thi Đại học có lời giải

Dạng 1: Viết phương trình mặt phẳng (P) đi qua điểm M và nhận vecto n → làm vecto pháp tuyến

1. Phương pháp giải 2. Ví dụ minh họa

Ví dụ 1: Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(0; 1; -1) và có vecto pháp tuyến n →(2;3;4)

A. y – z + 1 = 0 B. 2x + y – z- 3= 0

C. 2x + 3y + 4z +1= 0 D. 2x- 3y – 4z – 1 = 0

Hướng dẫn giải:

2( x- 0) + 3( y – 1) + 4( z + 1) = 0

Hay 2x + 3y + 4z + 1 = 0

Chọn C.

Ví dụ 2: Cho hai điểm A( 1;2; 7) và B(3; 0; -3), gọi M là trung điểm của AB. Viết phương trình mặt phẳng đi qua điểm M và vecto pháp tuyến n →(2;-3;1)

A. 2x – 3y+ z + 2 = 0 B. 2x – 3y + z + 3=0

C. 2x – 3y+ z = 0 D. 2x – 3y + z – 3= 0

Hướng dẫn giải:

+ Do M là trung điểm của AB nên tọa độ điểm M là:

+ Mặt phẳng đi qua điểm M( 2; 1; 2) và có vecto pháp tuyến có phương trình là:

2( x – 2) -3( y- 1)+ 1( z – 2 ) = 0

Hay 2x -3y + z – 3= 0

Chọn D.

Ví dụ 3: Cho tam giác ABC biết A( 2; 1; 3) và B( – 2; 3; -1) và C( 0; 2; 1), gọi G là trọng tâm của tam giác ABC. Viết phương trình mặt phẳng đi qua điểm G và vecto pháp tuyến n →(2;1;1)

A. 2x+ y+ z- 3= 0 B. 2x+ y- z+ 3=0

C. 2x+ z- 3= 0 D. 2x+ y- z- 6= 0

Hướng dẫn giải:

+ Do G là trọng tâm của tam giác ABC nên tọa độ điểm G là:

2( x- 0) + 1( y – 2) + 1.( z – 1) = 0

Hay 2x+ y+ z – 3= 0

Chọn A.

Viết phương trình mặt phẳng (α) đi qua điểm M (xo; yo; zo) và song song với một mặt phẳng (P): Ax+ By + Cz + D= 0.

1. Phương pháp giải

Cách 1:

Vecto pháp tuyến của mặt phẳng (P) là: n →(A;B;C)

Phương trình mặt phẳng (α):

Cách 2:

Mặt phẳng (α )

Ax+ By + Cz + D’= 0 (*) với D’ ≠ D

Vì mặt phẳng (α) đi qua điểm M (x o; y o; z o) nên thay tọa độ điểm M vào (*) tìm đươc D’

2. Ví dụ minh họa

Ví dụ 1: Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M (-1; 2; 0) và song song với mặt phẳng (Q): x + 2y – 3z + 10 = 0.

A. x + 2y – 3z – 3= 0 B. x – 2y+ 3z + 5 = 0

C. x+ 2y – 3z +3 = 0 D. – x+ 2y + 10 = 0

Hướng dẫn giải:

1( x+1) + 2(y- 2) – 3( z- 0) = 0 hay x+ 2y – 3z – 3 = 0

Chọn A.

Ví dụ 2: Cho hai điểm A(0; -2;1) và B( 2; 0; 3). Gọi M là trung điểm của AB. Viết phương trình mặt phẳng (P) đi qua M và song song với mặt phẳng Q: 2x + 5y +z – 10 =0

A. 2x+ 5y + z+ 2= 0 B. 2x+ 5y + z+ 3= 0

C. 2x+ 5y + z – 4= 0 D. 2x+ 5y + z+ 1= 0

Hướng dẫn giải:

Do M là trung điểm của AB nên tọa độ điểm M là:

2( x- 1) + 5( y+ 1) + 1(z- 2) = 0 hay 2x + 5y + z + 1= 0

Chọn D.

Ví dụ 3: Trong không gian Oxyz, cho các điểm A (5; 1; 3), B(1; 2; 6), C(5; 0; 4), D( -1; 2; -3). Viết phương trình mặt phẳng đi qua D và song song với mặt phẳng (ABC)

A. x+ y – z – 4= 0 B. x+ y +z+ 2= 0 C.x – y+ z+ 6= 0 D. Tất cả sai

Hướng dẫn giải:

Ta có:

Gọi n → là một vecto pháp tuyến của mặt phẳng (ABC) ta có nên n → cùng phương với [AB →, AC →]

1( x+ 1) + 1( y – 2) + 1( z+ 3) = 0 hay x+ y + z + 2= 0

Chọn C.

Ví dụ 4: Trong không gian Oxyz, cho các điểm A (-2;1;3), B(1; 2; 4), C(2; -1;3), D(0; 0; -1). Viết phương trình mặt phẳng đi qua D và song song với mặt phẳng (ABC)

A. x+ 2y+ z- 2= 0 B. x- 2y- 5z- 5= 0 C. x+ 2y- 5z- 9= 0 D. Tất cả sai

Hướng dẫn giải:

Ta có:

Gọi n → là một VTPT của mặt phẳng (ABC) ta có nên n → cùng phương với

1. (x – 0)+ 2( y – 0) – 5( z+ 1) =0 hay x+ 2y – 5z – 5 = 0

Chọn D.

Dạng 3: Viết phương trình mặt phẳng đi qua 3 điểm A, B, C không thẳng hàng. Viết phương trình mặt phẳng đi qua một điểm và nhận hai vecto u→, v→ làm vecto chỉ phương

1. Phương pháp giải

* Viết phương trình mặt phẳng đi qua 3 điểm A, B, C không thẳng hàng.

3. Điểm thuộc mặt phẳng: A (hoặc B, hoặc C)

Chú ý: Phương trình mặt phẳng (P) đi qua 3 điểm A(a;0;0); B(0;b;0); C(0;0;c) có dạng là:

x/a + y/b + z/c = 1 với a.b.c ≠ 0.

Trong đó A ∈ Ox; B ∈ Oy; C∈ Oz. Khi đó (P) được gọi là phương trình mặt phẳng theo đoạn chắn.

2. Mặt phẳng ( P) đi qua điểm M và nhận vecto n làm VTPT

2. Ví dụ minh họa

Ví dụ 1: Trong không gian Oxyz, viết phương trình mặt phẳng đi qua ba điểm A(1; -2; 0), B(1; 1; 1) và C(0; 1; -2)

A. 9x- 3y+ 3z- 11= 0 B. 9x+ y- 3z – 7= 0

C. 9x- y- 3z- 11=0 D. 9x- y+ 3z- 10= 0

Hướng dẫn giải:

Gọi n → là một vecto pháp tuyến của mặt phẳng (ABC) ta có nên n → cùng phương với [AB →, AC →]

9.( x – 1)+1.(y + 2) – 3( z – 0) = 0 hay 9x + y – 3z – 7 = 0

Chọn B.

Ví dụ 2: Trong không gian hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm M(5; 4; 3) và cắt các tia Ox, Oy, Oz tại các điểm A, B, C sao cho OA = OB = OC. Viết phương trình mặt phẳng (P).

A. x+ y+ z – 12 = 0 B. x- y- z + 2= 0

C. x- y+ z – 4= 0 D. x+ y- z – 6= 0

Hướng dẫn giải:

Do mặt phẳng (P) cắt các tia Ox, Oy, Oz tại các điểm A, B, C sao cho OA = OB = OC nên

Phương trình mặt phẳng (P) theo đoạn chắn là: x/a + y/a + z/a = 1

Do mặt phẳng (P) đi qua điểm M (5; 4; 3) nên ta có:

Khi đó, phương trình mặt phẳng (P) là: x/12 + y/12 + z/12 = 1 hay x+ y + z – 12 = 0

Chọn A.

Ví dụ 3: Trong không gian hệ tọa độ Oxyz, cho bốn điểm A(5; 1; 3), B(1; 6;2), C(5; 0; 4), D(4; 0; 6). Mặt phẳng (P) đi qua hai điểm A, B và song song với đường thẳng CD có phương trình là:

A. x+ 4y+ z- 27= 0 B. 10x+ 9y+ 5z- 74= 0

C. 10x- 5y- 9z+ 22= 0 D. Tất cả sai

Hướng dẫn giải:

Gọi n → là một vecto pháp tuyến của mặt phẳng (P)

Do A, B thuộc mặt phẳng (P), mặt phẳng (P) song song với đường thẳng CD nên ta có: nên n → cùng phương với [AB →, CD →].

Vậy phương trình mặt phẳng (P) có vecto pháp tuyến n → và đi qua điểm A(5; 1; 3) là:

10 (x – 5) + 9 ( y- 1) + 5 ( z – 3) = 0 hay 10x + 9y + 5z – 74 = 0

Chọn B.

Ví dụ 4: Viết phương trình mặt phẳng (P) đi qua M( 2; -1; 2)và nhận hai vecto (1;2;3) và (-2;1;0) làm vecto chỉ phương?

A. 3x+ 6y- 5z+ 1= 0 B. – 3x- 6y + 5z- 10= 0

C. 3x+ 5y- 6x+ 8= 0 D. 3x- 6y+ 5z+ 1= 0

Hướng dẫn giải:

-3( x- 2) – 6 ( y+ 1) + 5( z-2)= 0 hay – 3x- 6y+ 5z – 10= 0

Chọn B.

Ví dụ 5: Viết phương trình mặt phẳng (P) đi qua A( 2; -3; 4); B(2; 1; -3) và mặt phẳng (P) nhận vecto ( 2; 0; 1) làm vecto chỉ phương ?

A. 2x- 7y- 4z- 9= 0 B. 2x- 5y+ 3z – 9= 0

C. 2x+ 5y- 7z+ 10= 0 D. 2x+ 7y- 4z+ 10= 0

Hướng dẫn giải:

+ Ta có: AB →(0; 4; -7)

2( x-2) – 7( y+ 3) – 4( z- 4) =0 hay 2x – 7y – 4z- 9=0

Chọn A.

Dạng 4. Viết phương trình mặt phẳng trung trực của đoạn thẳng

1. Phương pháp giải

+ Phương trình mặt phẳng đi qua điểm M (x o; y o; z o) và có vecto pháp tuyến (A:B:C) là:

+ Cho trước hai điểm A và B. Viết phương trình mặt phẳng trung trực của AB :

* Gọi I là trung điểm của AB. Suy ra tọa độ điểm I ( áp dụng công thức trung điểm của đoạn thẳng).

2. Ví dụ minh họa

Ví dụ 1: Cho hai điểm A( 2; 1; 0) và B(-4 ; -3; 2) . Viết phương trình mặt phẳng trung trực của AB?

A. 3x + 2y – z+ 6= 0 B. 6x- 4y + 4z+ 3= 0

C. 3x – 2y – 2z+ 4= 0 D. 6x + 4y + 4z+ 1= 0

Hướng dẫn giải:

+ Gọi (P) là mặt phẳng trung trực của AB.

+ Gọi I là trung điểm của AB; tọa độ điểm I là:

+ Mặt phẳng ( P) qua I (- 1; -1; 1) và vecto pháp tuyến có phương trình là:

3( x+ 1)+ 2( y+ 1) – 1( z – 1) = 0 hay 3x + 2y – z + 6 = 0

Chọn A.

Ví dụ 2: Cho hai điểm A( 0; 2; -3) và B( 4; -4; 1). Gọi M là trung điểm của AB.Viết phương trình mặt phẳng trung trực của OM?

A. 2x + y +z+ 3= 0 B. 2x + y – z+ 3= 0

C. 2x – y – z – 3 = 0 D. 2x – y + z+ 1= 0

Hướng dẫn giải:

+ Do M là trung điểm của AB nên tọa độ của M là:

+ Gọi (P) là mặt phẳng trung trực của OM.

+ Gọi I là trung điểm của OM; tọa độ điểm I là:

2.(x-1) – 1.(y+1/2) – 1.(z+1/2) = 0 hay 2x – y – z – 3= 0

Chọn C.

Ví dụ 3: Trong mặt phẳng tọa độ Oxyz; cho hai điểm A và B. Gọi I là trung điểm của AB. Viết phương trình mặt phẳng trung trực của AB biết tọa độ điểm A( 1; 2; 0) và I( -2; 1; 1)

A. x + y- z+ 1= 0 B. 3x+ y- z+ 6= 0

C. 3x- y+ z- 1= 0 D. Tất cả sai

Hướng dẫn giải:

+ Gọi (P) là mặt phẳng trung trực của AB .

Phương trình mặt phẳng (P):

3( x+ 2) + 1( y-1) – 1(z- 1) = 0 hay 3x+ y – z+ 6= 0

Chọn B.

Dạng 5. Phương trình mặt phẳng theo đoạn chắn

1. Phương pháp giải

+ Phương trình mặt phẳng (P) đi qua ba điểm A(a; 0; 0) ; B( 0; b; 0) , C(0;0; c) với abc ≠ 0 có phương trình: x/a + y/b + z/c = 1

+ Phương trình mặt phẳng có dạng: x/a + y/b + z/c = 1 cắt ba trục Ox; Oy;Oz lần lượt tại các điểm A(a; 0; 0); B(0; b; 0) và C( 0; 0; c) .

2. Ví dụ minh họa

Ví dụ 1: Trong không gian với hệ tọa độ Oxyz; cho mặt phẳng (P): 2x – y+ 2z – 4= 0. Viết phương trình mặt phẳng (P) theo đoạn chắn?

Hướng dẫn giải:

Mặt phẳng ( P) cắt các trục tọa độ Ox; Oy; Oz lần lượt tại A( 2; 0; 0); B( 0; -4; 0) và C(0; 0; 2)

Chọn C.

Ví dụ 2: Trong không gian với hệ toạ độ Oxyz, gọi (P) là mặt phẳng qua G(1; -2; -1) và cắt các trục Ox; Oy; Oz lần lượt tại các điểm A; B; C (khác gốc O) sao cho G là trọng tâm của tam giác ABC. Khi đó mặt phẳng (P) có phương trình:

A. 2x – y+ 2z + 3 = 0 B. 2x – y – 2z – 6 =0

C. 2x + y – 2z + 9 = 0 D. 2x+ y + 3z – 9 =0

Hướng dẫn giải:

Gọi tọa độ ba điểm A( a; 0; 0); B(0; b; 0) và C(0; 0; c) với , khi đó mặt phẳng (P) phương trình có dạng:

Mà điểm G( 1; 2; 3) là trọng tâm tam giác ABC nên

Chọn B.

Ví dụ 3: Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P) đi qua điểm H(2; 1;1) và cắt các trục Ox, Oy, Oz lần lượt tại A; B; C (khác gốc toạ độ O) sao cho H là trực tâm tam giác ABC. Mặt phẳng (P) có phương trình là:

A. 2x+ y + z – 6= 0 B. 2x + y + z+ 6 = 0

C. 2x – y + z +6 = 0 D. 2x+ y – z + 6 = 0

Hướng dẫn giải:

Gọi tọa độ ba điểm A(a; 0; 0); B(0; b; 0) và C(0; 0; c) với , khi đó mặt phẳng ( P) phương trình có dạng:

Ta có:

Điểm H(2; 1; 1) là trực tâm tam giác ABC nên

Thay a; b; c vào (1), ta được: (P): x/3 + y/6 + z/6 = 1

hay (P): 2x+ y + z – 6 = 0

Chọn A.

Ví dụ 4: Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P) đi qua điểm M(1; 1; 1) và cắt chiều dương các trục Ox, Oy, Oz lần lượt tại A; B; C (khác gốc toạ độ O) sao cho tứ diện OABC có thể tích nhỏ nhất. Mặt phẳng (P) có phương trình là:

A. x – y – z- 3 = 0 B. x+ y+ z+ 3= 0

C. x+ y+ z – 3 = 0 D. x+ y – z+ 3 = 0

Hướng dẫn giải:

Điểm M(1;1;1) thuộc (P) nên ta có: 1/a + 1/b + 1/c = 1.

Thể tích khối tứ diện OABC: V O.ABC = 1/6.OA.OB.OC = 1/6 a.b.c

Áp dụng bất đẳng thức Côsi cho ba số dương 1/a; 1/b; 1/c :

⇔ a = b = c = 3

(P): x/3 + y/3 + z/3 = 1 ⇔ x + y + z – 3 = 0

Chọn C

Dạng 6. Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng d.

1. Phương pháp giải

+ Đường thẳng d: nhận vecto u →(a; b; c) làm vecto chỉ phương.

Đường thẳng : nhận vecto u →(a; b; c) làm vecto chỉ phương.

+ Để viết phương trình mặt phẳng (α) đi qua M và vuông góc với đường thẳng d ta làm như sau:

2. Ví dụ minh họa

Ví dụ 1: Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm O và vuông góc với đường thẳng d:

A. 2x – z = 0 B. -y+ 2z= 0 C. x- y+ 2z= 0 D. x + z = 0

Hướng dẫn giải:

+Mặt phẳng (P) vuông góc với đường thẳng (d) nên (P) có một vecto pháp tuyến là:

2(x – 0) + 0 (y -0) – 1. (z – 0) = 0 hay 2x – z = 0

Chọn A.

Ví dụ 2: Trong không gian hệ tọa độ Oxyz, cho ba điểm A (-2; 3; -3), B(2; 1; -1) và C(0; 2; 0). Viết phương trình mặt phẳng qua A và vuông góc với đường thẳng BC.

A. 2x+ y – z – 3= 0 B. x+ 2y – 2z + 2 = 0

C. -2x + y + z – 4 = 0 D. x + y + z + 2 = 0

Hướng dẫn giải:

Phương trình mặt phẳng cần tìm là:

-2( x+ 2) + 1. ( y – 3) + 1( z+ 3) = 0 hay -2 x + y+ z – 4= 0

Chọn C.

Ví dụ 3: Trong không gian với hệ tọa độ Oxyz; cho hai điểm A (1; 2; 3) và B( 3; 0; -1). Gọi I là trung điểm của AB. Viết phương trình mặt phẳng ( P) đi qua I và vuông góc với đường thẳng (d): ?

A. 5x+ 27 y – 5z + 12 = 0 B. 2x+ y+ 3z + 8 = 0

C. 2x+ y+ 3z – 8=0 D. 5x+ 27y – 5 z – 7= 0

Hướng dẫn giải:

+ I là trung điểm của AB nên tọa độ điểm I là:

Hay 2x+ y+ 3z – 8 = 0

Chọn C.

Ví dụ 4: Trong không gian với hệ tọa độ Oxyz; cho tam giác ABC với A (1;0; -1); B(2; 1; -1) Và C( 3; 2; -1). Gọi G là trọng tâm của tam giác ABC. Viết phương trình mặt phẳng ( P) đi qua G và vuông góc với đường thẳng (d) : ?

A. 2x – 3y+ z- 10= 0 B. 3x- 4y+ z – 1= 0

C. 3x+ 4y – z + 3= 0 D. 4x- 3y+ 2z – 10= 0

Hướng dẫn giải:

+ Do G là trọng tâm của tam giác ABC nên tọa độ điểm G là:

.

Hay 3x – 4y + z- 1= 0

Chọn B.

Dạng 7: Viết phương trình mặt phẳng (α ) chứa đường thẳng và vuông góc với mặt phẳng (β) .

1. Phương pháp giải

* Lấy một điểm M trên Δ

* Áp dụng cách viết phương trình mặt phẳng đi qua một điểm và có VTPT n α→

2. Ví dụ minh họa

Ví dụ 1: Trong không gian hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) chứa đường thẳng và vuông góc với mặt phẳng (Q): x+ 2y – z+ 10 = 0

A. x+ z = 0 B. x+ y +1= 0 C. y – z + 1= 0 D. x – y + 2z= 0

Hướng dẫn giải:

Mặt phẳng (P) chứa đường thẳng d và vuông góc với (Q) nên (P) có một vecto pháp tuyến là

1( x + 1) + 0( y – 2) + 1( z – 1) = 0 hay x+ z = 0

Chọn A.

Ví dụ 2: Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) chứa đường thẳng và vuông góc với mặt phẳng α : 2x – y + 3z – 98= 0 có phương trình là

A. 2x+ 3y+ 8z- 10= 0 B. 5x+ 8y – 6z- 1= 0

C. 5x+ 8y+ 3z- 1= 0 D.5x – 8y- 6z – 5 = 0

Hướng dẫn giải:

+ Mặt phẳng (P) chứa đường thẳng ∆ và vuông góc với mặt phẳng (α) nên (P) có một vecto pháp tuyến là n →=[u ∆→ ,n α→ ] = (5; -8; -6) và đi qua A(0; -1; 2)

Phương trình mặt phẳng (P) cần tìm là:

5( x+ 1) – 8( y – 1) – 6( z + 3) = 0 hay 5x – 8y – 6z – 5 = 0

Chọn D.

Ví dụ 3: Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(3; 1; 1), B( 2; -1; 2) và mặt phẳng : 2x – y + 2z + 50= 0. Mặt phẳng (P) đi qua hai điểm A; B và vuông góc với mặt phẳng α có phương trình là

A. x – 3y – 5z + 5 = 0 B. 3x – 4y – 5z = 0.

C. 3x – 4y – 5z – 2= 0 D. 3x+ 4y – 5z = 0

Hướng dẫn giải:

+ Mặt phẳng (P) đi qua hai điểm AB nên chứa đường thẳng AB và vuông góc với mặt phẳng (α) nên (P) có một VTPT là n → = [AB → , n α→ ] = (-3; 4; 5) và đi qua A(3; 1; 1)

+ Phương trình mặt phẳng (P) cần tìm là:

-3( x- 3) + 4( y-1) + 5( z- 1) = 0 hay -3x + 4y + 5z= 0

Vậy phương trình mp (P): – 3x + 4y+ 5z = 0 ⇔ 3x- 4y- 5z= 0

Chọn B.

Dạng 8: Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và song song với Δ’; (Δ; Δ’ chéo nhau).

1. Phương pháp giải

Vecto pháp tuyến của mặt phẳng (α) là = [, ]

Lấy 1 điểm M trên đường thẳng ∆

Áp dụng cách viết phương trình mặt phẳng đi qua một điểm và có 1 vecto pháp tuyến.

2. Ví dụ minh họa

Ví dụ 1: Trong không gian hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) chứa đường thẳng

A.- 6x+ y+ 2z- 3= 0 B. -6x+ y+ 2z+ 3= 0

C. 6x+ y- 2z+ 1= 0 D. 6x- y- 2z+ 4= 0

Hướng dẫn giải:

Đường thẳng d1 đi qua điểm M (1; 1; 1) và có vecto chỉ phương u 1→(0;-2;1)

Đường thẳng d2 đi qua điểm N (1; 0;1) có vecto chỉ phương u 2→(1;2;2)

Gọi n → là một vecto pháp tuyến của mặt phẳng (P) ta có: nên → cùng phương với [u 1→,u 2→] . Chọn n → ( -6; 1; 2)

Mặt phẳng (P) đi qua điểm M (1; 1; 1) và nhận VTPT n → (-6; 1; 2) có phương trình là:

– 6(x -1) + 1( y- 1) + 2( z – 1)= 0 hay – 6x + y + 2z + 3= 0

Thay tọa độ điểm N vào phương trình mặt phẳng (P) thấy không thỏa mãn.

Vậy phương trình mặt phẳng (P) là – 6x + y + 2z + 3= 0

Chọn B.

Ví dụ 2: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng Mặt phẳng α chứa ∆ 1 và song song với đường thẳng ∆ 2 có phương trình là

A. x+ 4y + 2z + 2 = 0 B. 3x – 2y + 2z – 6 = 0

C. 3x – 2y + 2z + 6 = 0 D. x+ 4y+ 2z – 2 = 0

Hướng dẫn giải:

Đường thẳng ∆_1 đi qua điểm M (0; 1; -2) và có vecto chỉ phương u 1→ (2; 1; -2)

Đường thẳng d_2 đi qua điểm N (0; 0; 2) có vecto chỉ phương u 2→ (2; 2; -1)

Gọi n → là một vecto pháp tuyến của mặt phẳng (P) ta có nên n → cùng phương với [u 1→, u 2→] .Chọn n → ( 3; -2; 2)

Mặt phẳng (α) đi qua điểm M (0; 1; -2) và nhận VTPT n → ( 3; -2; 2) có phương trình là:

3( x- 0) – 2( y – 1) + 2( z+ 2) = 0 hay 3x – 2y + 2z + 6 = 0

Thay tọa độ điểm N vào phương trình mặt phẳng ( thấy không thỏa mãn.

Vậy phương trình mặt phẳng (P) là 3x – 2y + 2z + 6 = 0

Chọn C.

Ví dụ 3: Trong không gian hệ tọa độ Oxyz, cho đường thẳng .Viết phương trình mặt phẳng (P) chứa d và song song với d’

A. x+ 3y – 2z – 24= 0 B. x+ 3y+ 2z – 24=0

C. x – 3y+ 2z + 12= 0 D. x – 3y – 2z – 1= 0

Hướng dẫn giải:

Đường thẳng d đi qua điểm M (1; 5; 4) và có vecto chỉ phương u 1→ (2; 0; -1)

Đường thẳng d’ đi qua điểm N (3; 6;0) có vecto chỉ phương u 2→ (1; 1; -1)

Gọi n → là một vecto pháp tuyến của mặt phẳng (P) ta có nên n → cùng phương với [u 1→, u 2→]. Chọn n →(1;3;2) .

Mặt phẳng (P) đi qua điểm M (1; 5; 4) và nhận vecto pháp tuyến n →(1;3;2) có phương trình là:

1( x -1) + 3( y -5) + 2( z- 4) = 0 hay x+ 3y + 2z – 24= 0

Thay tọa độ điểm N vào phương trình mặt phẳng (P) thấy không thỏa mãn.

Vậy phương trình mặt phẳng (P) là x+ 3y + 2z – 24= 0.

Chọn B.

Ví dụ 4: Trong không gian hệ tọa độ Oxyz, cho bốn điểm A(5; 1; 3), B(1; 6;2), C(5; 0; 4), D(4; 0; 6). Mặt phẳng (P) đi qua hai điểm A, B và song song với đường thẳng CD có phương trình là:

A. 10x+ 9y + 5z – 74= 0 B. 10x – 9y – 5z+ 2= 0

C. 10x – 9y + 5z + 56= 0 D. Đáp án khác

Hướng dẫn giải:

Gọi n → là một vecto pháp tuyến của mặt phẳng (P)

Do A, B thuộc mặt phẳng (P), mặt phẳng (P) song song với đường thẳng CD nên ta có nên n → cùng phương với [AB →, CD →] . Chọn n → (10; 9; 5)

Vậy phương trình mặt phẳng (P) có VTPT n → (10; 9; 5) và đi qua điểm A(5; 1; 3) là:

10. (x – 5) + 9( y- 1)+ 5( z- 3) =0 hay 10x + 9y + 5z – 74 =0

Thay tọa độ C, D vào phương trình thấy không thỏa mãn.

Vậy phương trình mặt phẳng cần tìm là 10x +9y + 5z – 74= 0

Chọn A.

Dạng 9. Viết phương trình mặt phẳng chứa đường thẳng d và đi qua điểm M không thuộc d

1. Phương pháp giải

* Tìm vecto chỉ phương của đường thẳng d là u → . Lấy 1 điểm N trên d, tính tọa độ vecto MN →

* Vecto pháp tuyến của mặt phẳng (P) là n → = [u →, MN →]

* Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có vecto pháp tuyến.

2. Ví dụ minh họa

Ví dụ 1: Trong không gian hệ tọa độ Oxyz, cho điểm A (4; -3; 1) và đường thẳng d: . Viết phương trình mặt phẳng (P) chứa điểm A và đường thẳng d.

A. 10x+ 6y – 13z + 1= 0 B. 10 x – 6y- 13z + 12 = 0

C. 10x + 6y – 13z – 9 = 0 D. 10x – 6y – 13z+ 19 = 0

Hướng dẫn giải:

Đường thẳng d đi qua điểm N(-1; 1; -1) và có vecto chỉ phương u →(2;1; 2); AN →( – 5; 4; -2)

Mặt phẳng (P) chứa đường thẳng d và đi qua điểm A nên (P) có một vecto pháp tuyến là

Phương trình mặt phẳng (P) là:

10(x – 4) + 6 ( y+ 3) – 13( z- 1) = 0 hay 10x + 6y – 13z – 9 = 0

Chọn C.

Ví dụ 2: Trong không gian hệ tọa độ Oxyz, mặt phẳng (P) qua điểm A(0; 0; 2) và chứa trục hoành có phương trình là:

A. y= 0 B. y= 2 C. z= 2 D. x= 0

Hướng dẫn giải:

Trục hoành đi qua gốc tọa độ O(0; 0; 0) và có vecto chỉ phương u →(1; 0; 0) ; OA →(0; 0; 2)

Mặt phẳng (P) chứa đường thẳng d và đi qua điểm A nên (P) có một vecto pháp tuyến là

Phương trình mặt phẳng (P) là: 0( x- 0) + 1( y-0) + 0(z – 2) = 0 hay y = 0

Chọn A.

Ví dụ 3: Trong không gian với hệ tọa độ Oxyz; mặt phẳng (P) đi qua A( 1; 2; 3) và chứa đường thẳng d: Phương trình mặt phẳng (P) có dạng 5x+ ay+ bz+ c= 0. Tính a+ b+ c?

A. – 1 B. 3 C. 2 D. 5

Hướng dẫn giải:

+ Đường thẳng d đi qua điểm N(1; -1; -1) và có vecto chỉ phương u →(2; 1; 3); AN →(0; -3; -4)

Mặt phẳng (P) chứa đường thẳng d và đi qua điểm A nên (P) có một vecto pháp tuyến là

Phương trình mặt phẳng (P) là: 5( x- 1)+ 8( y-2) – 6( z- 3) = 0 hay 5x+ 8y- 6z – 3= 0

Chọn A.

Ví dụ 4: Trong không gian với hệ tọa độ Oxyz; cho mặt phẳng (P) đi qua điểm A(1; 2; 1); B( 1; -2; 0) và C(2; 1; 2). Phương trình mặt phẳng ( P) có dạng : 5x+ ay+ bz+ c= 0. Tính a.b.c?

A. 10 B. – 8 C. 6 D.12

Hướng dẫn giải:

+ Mặt phẳng (P) đi qua ba điểm A; B và C nên (P) có một vecto pháp tuyến là

5(x- 1) +1( y- 2) – 4( z- 1) = 0 hay 5x+ y – 4z -3= 0

Chọn D.

Dạng 10: Viết phương trình mặt phẳng (P) chứa 2 đường thẳng cắt nhau d và d’

1. Phương pháp giải

* Lấy 1 điểm M trên d

* Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có vecto pháp tuyến.

2. Ví dụ minh họa

Ví dụ 1: Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) chứa hai đường thẳng

có phương trình là

A. (P): x+ y- z+ 2= 0 B. (P) : x- y- z+ 2= 0

C. (P) : x- z+ 2= 0 D. Không tồn tại.

Hướng dẫn giải:

Ta có: [,] = ( 3; -3; -3); (1; 1;0)

Mặt phẳng (P) chứa đường thẳng d1 và d2 cắt nhau nên (P) có một vecto pháp tuyến là

Phương trình mặt phẳng (P) là:

1( x+ 2) – 1( y+ 1) – 1( z- 1) = 0 hay x- y – z + 2= 0

Chọn B.

Ví dụ 2: Trong không gian hệ tọa độ Oxyz, phương trình mặt phẳng (P) chứa hai đường thẳng có dạng 6x+ ay+ bz+c= 0. Tính a+ b+ c?

A. 10 B. -11 C. 11 D. 8

Hướng dẫn giải:

Ta có: [, ]= ( 6; 3; 1); MN → ( 0; 3; -9)

Mặt phẳng (P) chứa đường thẳng d và d’ cắt nhau nên (P) có một vecto pháp tuyến là

Phương trình mặt phẳng (P) là:

6( x- 1)+ 3( y – 2) + 1( z- 3) =0 hay 6x + 3y + z – 15= 0

Chọn B

Ví dụ 3: Trong không gian với hệ trục tọa độ Oxyz; cho đường thẳng có dạng 6x+ ay+ bz+c= 0. Tính a+ b+ c?. Gọi mặt phẳng (P) chứa d 1 và d 2. Tính khoảng cách từ điểm I( 2; 1; 3) đến mặt phẳng (P)?

có dạng 6x+ ay+ bz+c= 0. Tính a+ b+ c?

Hướng dẫn giải:

Đường thẳng d 1 đi qua điểm M(0; -2; 3) và có vecto chỉ phương (2; 1; 3)

Đường thẳng d 2 đi qua điểm N(2; -3; 3) và có vecto chỉ phương (2; -1; 0)

Mặt phẳng (P) chứa đường thẳng d1 và d2 cắt nhau nên (P) có một vecto pháp tuyến là

Phương trình mặt phẳng (P) là:

3( x-0) + 6( y+2) – 4( z-3) = 0 hay 3x+ 6y – 4z+ 24= 0

Khoảng cách từ điểm I( 2; 1; 3) đến mặt phẳng (P) là:

Chọn D.

Dạng 11: Viết phương trình mặt phẳng chứa 2 đường thẳng song song d và d’

1. Phương pháp giải

* Tìm vecto chỉ phương của d và d’ là u 1→;u 2→ lấy M thuộc d; N thuộc d’

* Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 vecto pháp tuyến.

2. Ví dụ minh họa

Ví dụ 1: Trong không gian hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) chứa hai đường thẳng

A. 6x+ 3y+ z-10= 0 B. 6x+ 3y+ z- 15 = 0

C. 6x- 3y+ z- 14= 0 D . Đáp án khác

Hướng dẫn giải:

Mặt phẳng (P) chứa đường thẳng d và d’ song song nên (P) có một vecto pháp tuyến là

Phương trình mặt phẳng (P) có vecto pháp tuyến (6; 3; 1) và đi qua điểm N (1; 2; 3) là:

6( x – 1)+ 3(y -2) +1(z – 3) = 0 hay 6x + 3y + z – 15 = 0

Chọn B.

Ví dụ 2: Trong không gian hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) chứa trục Oz và đường thẳng

A. x+ 3x= 0 B. y+ 3z= 0 C. x+ 3y= 0 D. z= 0

Hướng dẫn giải:

Mặt phẳng (P) chứa đường thẳng Oz và d song song nên (P) có một vecto pháp tuyến là

Chọn C.

Ví dụ 3: Trong không gian với hệ tọa độ Oxyz; viết phương trình mặt phẳng (P) đi qua A( -1; 2; 1); B( 0; 4; – 2) và chứa đường thẳng d:

A. 7x + y + 3z+ 2= 0 B. 7x – 6y+ z- 10= 0

C. 7x – y + 3z- 16= 0 D. 7x – y + z + 10= 0

Hướng dẫn giải:

Suy ra: đường thẳng d và AB song song với nhau.

7( x+ 1) + 1( y-2) + 3( z- 1)= 0 hay 7x+ y + 3z + 2= 0

Chọn A.

Ví dụ 4: Trong không gian với hệ trục tọa độ Oxyz; cho đường thẳng . Gọi mặt phẳng (P) chứa d1và d2. Biết mặt phẳng (P) có phương trình dạng: x+ ay+ bz+ c= 0. Tính a.b.c?

A. 8 B. – 5 C. 12 D. -3

Hướng dẫn giải:

Mặt phẳng (P) chứa đường thẳng d1 và d2 song song với nhau nên (P) có VTPT là

Phương trình mặt phẳng (P) là:

1( x- 0) + 1( y- 1) + 1( z-2) = 0 hay x + y + z – 3= 0

Chọn D.

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại chúng tôi

phuong-phap-toa-do-trong-khong-gian.jsp

Viết Phương Trình Mặt Phẳng Đi Qua 3 Điểm

Toán lớp 12: Phương pháp tọa độ trong không gian

Viết phương trình mặt phẳng đi qua 3 điểm

Phương pháp giải

3. Điểm thuộc mặt phẳng: A (hoặc B, hoặc C)

4. Viết phương trình mặt phẳng đi qua 1 điểm và có vecto pháp tuyến

Chú ý: Phương trình mặt phẳng (P) đi qua 3 điểm A(a;0;0); B(0;b;0); C(0;0;c) có dạng là:

(x/a) +(y/b) +(z/c) =1

với a .b .c ≠ 0. Trong đó A ∈ Ox; B ∈ Oy; C∈ Oz. Khi đó (P) được gọi là phương trình mặt phẳng theo đoạn chắn.

Ví dụ minh họa

Bài 1: Trong không gian Oxyz, viết phương trình mặt phẳng đi qua ba điểm A(1; -2; 0), B(1; 1; 1) và C(0; 1; -2)

Hướng dẫn:

Bài 2: Trong không gian hệ tọa độ Oxzy, gọi (α) là mặt phẳng cắt ba trục tọa độ tại A (2; 0; 0), B(0; -3; 0), C(0; 0; 4). Phương trình mặt phẳng (α) là?

Hướng dẫn:

Cách 1:

Gọi n → là một vecto pháp tuyến của mặt phẳng (α) ta có:

nên n → cùng phương với [ AB → , AC → ]

Chọn n → =(6; -4; 3) ta được phương trình mặt phẳng (α) là

6(x -2) -4y +3z =0

⇔ 6x -4y +3z -12 =0

Cách 2:

Do mặt phẳng cắt các trục tọa độ nên ta có phương trình mặt phẳng theo đoạn chắn là:

(x/2) +(y/(-3)) +(z/4) =1

⇔ 6x -4y +3z -12 =0

Bài 3: Trong không gian hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm M(5; 4; 3) và cắt các trục Ox, Oy, Oz tại các điểm A, B, C sao cho OA = OB = OC. Viết phương trình mặt phẳng (P).

Hướng dẫn:

Do mặt phẳng (P) cắt các trục Ox, Oy, Oz tại các điểm A, B, C sao cho OA = OB = OC nên A (a; 0; 0); B(0; a; 0); C(0; 0; a)

Phương trình mặt phẳng (P) theo đoạn chắn là:

(x/a) +(y/a) +(z/a) =1

Do mặt phẳng (P) đi qua điểm M (5; 4; 3) nên ta có:

(5/a) +(4/a) +(3/a) =1 ⇔ (12/a) =1 ⇔ a=12

Khi đó, phương trình mặt phẳng (P) là:

(x/12) +(y/12) +(z/12) =1

⇔ x +y +z -12 =0

Bài 4: : Trong không gian hệ tọa độ Oxyz, cho bốn điểm A(5; 1; 3), B(1; 6;2), C(5; 0; 4), D(4; 0; 6). Mặt phẳng (P) đi qua hai điểm A, B và song song với đường thẳng CD có phương trình là:

Hướng dẫn:

Gọi n → là một vecto pháp tuyến của mặt phẳng (P)

Do A, B thuộc mặt phẳng (P), mặt phẳng (P) song song với đường thẳng CD nên ta có: ⇒ n → cùng phương với [ AB → , CD → ]

Chọn n → =(10;9;5)

Vậy phương trình mặt phẳng (P) có vecto pháp tuyến n → =(10;9;5) và đi qua điểm A(5; 1; 3) là:

10(x -5) +9(y -1) +5(z -3) =0

⇔ 10x +9y +5z -74 =0

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại chúng tôi

phuong-phap-toa-do-trong-khong-gian.jsp

Các Dạng Toán Về Phương Trình Đường Thẳng Trong Mặt Phẳng, Bài Tập Vận Dụng

I. Tóm tắt lý thuyết phương trình đường thẳng

1. Vectơ pháp tuyến và phương trình tổng quát của đường thẳng

* Các dạng đặc biệt của phương trình đường thẳng.

– (d): ax + c = 0 (a ≠ 0): (d) song song hoặc trùng với Oy

– (d): by + c = 0 (b ≠ 0): (d) song song hoặc trùng với Ox

– (d): ax + by = 0 (a 2 + b 2 ≠ 0): (d) đi qua gốc toạ độ.

– Phương trình dạng đoạn chắn: ax + by = 1 nên (d) đi qua A (a;0) B(0;b) (a,b ≠ 0)

– Phương trình đường thẳng có hệ số góc k: y= kx+m (k được gọi là hệ số góc của đường thẳng)

2. Vectơ chỉ phương và phương trình tham số, phương trình chính tắc của đường thẳng

* Chú ý: – Khi thay mỗi t ∈ R vào PT tham số ta được 1 điểm M(x;y) ∈ (d).

– Nếu điểm M(x;y) ∈ (d) thì sẽ có một t sao cho x, y thoả mãn PT tham số.

– 1 đường thẳng sẽ có vô số phương trình tham số (vì ứng với mỗi t ∈ R ta có 1 phương trình tham số).

– Phương trình đường thẳng đi qua 2 điểm A(x A;y A) và B(x B;y B) có dạng:

– Cho điểm M(x 0;y 0) và đường thẳng Δ: ax + by + c = 0, khoảng cách từ M đến Δ được tính theo công thức sau:

3. Vị trí tương đối của 2 đường thẳng

II. Các dạng toán về phương trình đường thẳng

⇒ PT tổng quát của đường thẳng (d) là: 2(x-1) – 3(y-2) = 0 ⇔ 2x – 3y +4 = 0

Dạng 3: Viết phương trình đường thẳng đi qua 1 điểm và song song với 1 đường thẳng

Ví dụ: Viết phương trình đường thẳng (d) biết rằng:

b) đi qua M(3;2) và

Ví dụ: Viết phương trình đường thẳng (d) biết rằng (d):

a) đi qua M(-2;3) và ⊥ Δ: 2x – 5y + 3 = 0

Dạng 5: Viết phương trình đường thẳng đi qua 2 điểm

Ví dụ: Viết PTĐT đi qua 2 điểm A(1;2) và B(3;4).

Ví dụ: Viết PTĐT (d) đi qua M(-1;2) và có hệ số góc k = 3;

– PTĐT (d) đi qua M(-1;2) và có hệ số góc k = 3 có dạng: y = k(x-x 0) + y 0

⇒ Vậy PTĐT (d) là: y = 3(x+1) + 2 ⇔ y = 3x + 5

Dạng 7: Viết phương trình đường trung trực của một đoạn thẳng

Ví dụ: Viết PTĐT (d) vuông góc với đường thẳng AB và đi qua trung tuyến của AB biết: A(3;-1) và B(5;3)

– (d) đi qua trung điểm I của AB, và I có toạ độ: x i = (x A+x B)/2 = (3+5)/2 = 4; y i = (y A+y B)/2 = (-1+3)/2 = 1; ⇒ toạ độ của I(4;1)

⇒ (d) đi qua I(4;1) có VTPT (2;4) có PTTQ là: 2(x-4) + 4(y-1) = 0 ⇔ 2x + 4y -12 = 0 ⇔ x + 2y – 6 = 0.

Ví dụ: Viết PTĐT (d) biết (d) đi qua M(-1;2) và tạo với chiều dương trục Ox 1 góc bằng 45 0.

– Giả sử đường thẳng (d) có hệ số góc k, như vây k được cho bở công thức k = tan∝ = tan(45 0) = 1.

⇒ PTĐT (d) đi qua M(-1;2) và có hệ số góc k = 1 là: y = 1.(x+1) + 2 ⇔ y = x + 3

* Giải sử cần tìm hình chiếu H của điểm M lên đường thẳng (d), ta làm như sau:

– Lập phương trình đường thẳng (d’) qua M vuông góc với (d). (theo dạng toán 4).

– H là hình chiếu vuông góc của M lên (d) ⇒ H là giao của (d) và (d’).

Ví dụ: Tìm hình chiếu của điểm M(3;-1) lên đường thẳng (d) có PT: x + 2y – 6 = 0

– Gọi (d’) là đường thẳng đi qua M và vuông góc với (d)

– H là hình chiếu của M thì H là giao điểm của (d) và (d’) nên có:

Thay x,y từ (d’) và PT (d): (3+t) + 2(-1+2t) – 6 = 0 ⇔ 5t – 5 = 0 ⇔ t =1

⇒ x = 4, y = 1 là toạ độ điểm H.

* Giải sử cần tìm điểm M’ đối xứng với M qua (d), ta làm như sau:

– Tìm hình chiếu H của M lên (d). (theo dạng toán 9).

– M’ đối xứng với M qua (d) nên M’ đối xứng với M qua H (khi đó H là trung điểm của M và M’).

Ví dụ: Tìm điểm M’ đối xứng với M(3;-1) qua (d) có PT: x + 2y – 6 = 0

– Đầu tiên ta tìm hình chiếu H của M(3;-1) lên (d). Theo ví dụ ở dạng 9 ta có H(4;1)

– Khi đó H là trung điểm của M(3;-1) và M'(x M’;y M‘), ta có:

⇒ Điểm đối xứng của M(3;-1) lên (d): x + 2y – 6 = 0 là M'(5;3)

_ Hệ (*) vô số nghiệm ⇒ d 1 ≡ d 2

_ Hệ (*) có nghiệm duy nhất ⇒ d 1 cắt d 2 và nghiệm là toạ độ giao điểm.

Ví dụ: Xét vị trí tương đối của 2 đường thằng

a) Số giao điểm của d 1 và d 2 là số nghiệm của hệ phương trình

– Giải hệ PT trên ta được nghiệm x = 1; y =1.

b) Từ PTĐT d 2 ta có x = 1-4t và y = 2+2t thay vào PTĐT d 1 ta được:

(1-4t) + 2(2+2t) – 5 = 0 ⇔ 0 = 0 ⇒ 2 đường thẳng trùng nhau (có vô số nghiệm).

Tổng Hợp Các Dạng Toán Về Phương Trình Đường Thẳng Trong Các Đề Thi (Có Lời Giải)

Published on

Tổng hợp các dạng toán về phương trình đường thẳng trong các đề thi (có lời giải) (hệ trục Oxy). được Sưu tầm & biên soạn: Lộc Phú Đa – Việt Trì – Phú Thọ . Tài liệu có 59 trang file word. Các bài toán đều có hướng dẫn giải rõ ràng và chi tiết. Đây là tài liệu không thể thiếu cho các em đang ôn thi THPT quốc gia môn Toán http://giavienb.net/

1. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 1 Jun . 17 C E  Bài 1Trong mÆt ph¼ng täa ®é Oxy cho tam gi¸c ABC, víi )2;1(,)1;2(  BA , träng t©m G cña tam gi¸c n”m trªn ®-êng th¼ng 02  yx . T×m täa ®é ®Ønh C biÕt diÖn tÝch tam gi¸c ABC b”ng 27 2 Hướng dẫn:V× G n”m trªn ®-êng th¼ng 02  yx nªn G cã täa ®é )2;( ttG  . Khi ®ã ( 2;3 )AG t t    , ( 1; 1)AB     VËy diÖn tÝch tam gi¸c ABG lµ     1)3()2(2 2 1 .. 2 1 22 2 22  ttABAGABAGS = 2 32 t NÕu diÖn tÝch tam gi¸c ABC b”ng 27 2 th× diÖn tÝch tam gi¸c ABG b”ng 27 9 6 2  . VËy 2 3 9 2 2 t   , suy ra 6t hoÆc 3t . VËy cã hai ®iÓm G : )1;3(,)4;6( 21  GG . V× G lµ träng t©m tam gi¸c ABC nªn 3 ( )C G A Bx x x x   vµ 3 ( )C G A By y y y   . Víi )4;6(1 G ta cã )9;15(1 C , víi )1;3(2 G ta cã )18;12(2 C Bài 2Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A có đỉnh A(6; 6), đường thẳng đi qua trung điểm của các cạnh AB và AC có phương trình x + y 4 = 0. Tìm tọa độ các đỉnh B và C, biết điểm E(1; 3) nằm trên đường cao đi qua đỉnh C của tam giác đã cho. Hướng dẫn:Gọi  là đường thẳng đi qua trung điểm của AC và AB Ta có   6 6 4 , 4 2 2 d A      Vì  là đường trung bình của  ABC    ; 2 ; 2.4 2 8 2d A BC d A     Gọi phương trình đường thẳng BC là: 0x y a   Từ đó: 46 6 8 2 12 16 282 aa a a            Nếu 28a   thì phương trình của BC là 28 0x y   , trường hợp này A nằm khác phía đối với BC và  , vô lí. Vậy 4a  , do đó phương trình BC là: 4 0x y   . Đường cao kẻ từ A của ABC là đường thẳng đi qua A(6;6) và BC : 4 0x y   nên có phương trình là 0x y  . Tọa độ chân đường cao H kẻ từ A xuống BC là nghiệm của hệ phương trình 0 2 4 0 2 x y x x y y              Vậy H (-2;-2) VìBC có phương trình là 4 0x y   nên tọa độ B có dạng: B(m; -4-m) Lại vì H là trung điểm BC nên C(-4-m;m) Suy ra:  5 ; 3 , ( 6; 10 )CE m m AB m m          ;Vì CE AB nên      . 0 6 5 3 10 0ABCE a a a a           2 0 2 12 0 6 a a a a        Vậy     0; 4 4;0 B C    hoặc     6;2 2; 6 B C    . B H

6. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 6 Jun . 17 độ các đỉnh của tam giác. Bài 16. Bài 17 . 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 2 35 30 25 20 15 10 5 5 10 15 x+y-5=0 Hướng dẫn: * tìm M’ là điểm đối xứng của M qua BD * Viết pt đường cao AH . (Đi qua H, có vtpt:n =HM’ * Tìm các điểm A và B thuộc các đường phân giác BD và đường cao AH ,đối xứng nhau qua M c M’ M H B D 10 8 6 4 2 2 4 6 10 5 5 10 x+7y-31=0 Hướng dẫn: * Viết pt đường thẳng (D) đi qua M và tạo với đt d 1 góc 45°, Đỉnh B là giao của (D) và d * Viết pt đường thẳng (D’) đi qua N và vuông góc với (D). Đỉnh C là giao của d và (D’) * Từ đó suy ra đỉnh A ( Bài toán có nhiều hướng giải khác nhau) A’ C’ A M N C B 6 4 2 2 4 6 15 10 5 5 x+y+3=0 x-4y-2=0 Hướng dẫn: *Do tam giác ABC cân tại A, nên khi dựng hình bình hành AMEM’ thì AMEM’ là hình thoi và tâm I là hình chiếu của M trên đường cao AH. * Từ đó ta có cách xác định các đỉnh A,B,C như sau: +viết pt đt EM ( đi qua M,//d ); Xác dịnh giao điểm E cảu ME và đường cao AH. +Xác định hình chiếu I của M trên AH,và xác định tọa độ của A + xác định B là giao của MA và d +Xác định C là điểm đối xứng của B qua AH H I M’ E B M(1;1) A C

8. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 8 Jun . 17 Bài 21 Trong mặt phẳng Oxy cho các điểm        A 1;0 ,B 2;4 ,C 1;4 ,D 3;5  và đường thẳng d:3x y 5 0   . Tìm điểm M trên d sao cho hai tam giác MAB, MCD có diện tích bằng nhau Hướng dẫn:M thuộc d thi M(a;3a-5 ) – Mặt khác :     1 3;4 5, : 4 3 4 0 3 4 x y AB AB AB x y                 1 4 4;1 17; : 4 17 0 4 1 x y CD CD CD x y             – Tính :       1 2 4 3 3 5 4 4 3 5 1713 19 3 11 , , 5 5 17 17 a a a aa a h M AB h             – Nếu diện tich 2 tam giác bằng nhau thì : 1 2 11 13 19 3 115.13 19 17. 3 111 1 . . 12 13 19 11 32 2 5 17 8 a aa a a AB h CD h a a a                 – Vậy trên d có 2 điểm :  1 2 11 27 ; , 8;19 12 12 M M       Bài 22. Viết phương trình cạnh BC của tam giác ABC , biết tọa độ chân các đường cao tương ứng là A’,B’,C’. Hướng dẫn: Bài chúng tôi hình tam giác ABC có diện tích bằng 2. Biết A(1;0), B(0;2) và trung điểm I của AC nằm trên đường thẳng y = x. Tìm toạ độ đỉnh C Hướng dẫn: – Nếu C nằm trên d : y=x thì A(a;a) do đó suy ra C(2a-1;2a).- Ta có :   0 2 , 2 2 d B d    . – Theo giả thiết :       2 21 4 . , 2 2 2 2 0 2 2 S AC d B d AC a a        2 2 1 3 28 8 8 4 2 2 1 0 1 3 2 a a a a a a                 Gọi H là trực tâm ABC,Dễ c/m dược A’H,B’H,C’H là các đường phân giác trong của tam giác A’B’C’. và viết được phương trình của A’H, ,Từ đó suy ra phương trình của BC. A’ C’ B’ H B C A

9. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 9 Jun . 17 – Vậy ta có 2 điểm C : 1 2 1 3 1 3 1 3 1 3 ; , ; 2 2 2 2 C C                   Bài 24.Trong mÆt ph¼ng täa ®é Oxy cho tam gi¸c ABC, víi )5;2(,)1;1( BA , ®Ønh C n”m trªn ®-êng th¼ng 04 x , vµ träng t©m G cña tam gi¸c n”m trªn ®-êng th¼ng 0632  yx . TÝnh diÖn tÝch tam gi¸c ABC. Hướng dẫn: – Tọa độ C có dạng : C(4;a) ,     5 3;4 1 1 : 4 3 7 0 3 4 AB AB x y AB x y              – Theo tính chát trọng tâm ; 1 2 4 1 3 3 1 5 6 3 33 A B C G G A B C GG x x x x x y y y a a yy                       – Do G nằm trên : 2x-3y+6=0 , cho nên : 6 2.1 3 6 0 2 3 a a            . – Vậy M(4;2) và     4.4 3.2 7 1 1 15 , 3 . , 5.3 2 2 216 9 ABCd C AB S AB d C AB          (đvdt) Bài 25.Trong mÆt ph¼ng täa ®é Oxy cho tam gi¸c ABC, víi )2;1(,)1;2(  BA , träng t©m G cña tam gi¸c n”m trªn ®-êng th¼ng 02  yx . T×m täa ®é ®Ønh C biÕt diÖn tÝch tam gi¸c ABC b”ng13,5 . Hướng dẫn:Ta có : M là trung điểm của AB thì M 3 1 ; 2 2       . Gọi C(a;b) , theo tính chất trọng tam tam giác : 3 3 3 3 G G a x b y       ; Do G nằm trên d :   3 3 2 0 6 1 3 3 a b a b         – Ta có :       3 52 1 1;3 : 3 5 0 , 1 3 10 a bx y AB AB x y h C AB              – Từ giả thiết :   2 5 2 51 1 . , 10. 13,5 2 2 210 ABC a b a b S AB h C AB         2 5 27 2 32 2 5 27 2 5 27 2 22 a b a b a b a b a b                     – Kết hợp với (1) ta có 2 hệ :  1 2 20 6 6 3 2 32 3 38 38 38 20 ; , 6;12 3 3 36 6 122 22 3 18 6 b a b a b a b a a C C a b a b ba b a a                                                    Bài 26Trong mặt phẳng oxy cho ABC có A(2;1) . Đường cao qua đỉnh B có phương trình x- 3y – 7 = 0 .Đường trung tuyến qua đỉnh C có phương trình : x + y +1 = 0 . Xác định tọa độ B và C . Tính diện tích ABC .

10. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 10 Jun . 17 Hướng dẫn:- Đường thẳng (AC) qua A(2;1) và vuông góc với đường cao kẻ qua B , nên có véc tơ chỉ phương       2 1; 3 : 1 3 x t n AC t R y t          – Tọa độ C là giao của (AC) với đường trung tuyến kẻ qua C : 2 1 3 1 0 x t y t x y           Giải ta được : t=2 và C(4;-5). Vì B nằm trên đường cao kẻ qua B suy ra B(3a+7;a) . M là trung điểm của AB 3 9 1 ; 2 2 a a M         . – Mặt khác M nằm trên đường trung tuyến kẻ qua C :   3 9 1 1 0 3 1; 2 2 2 a a a B            – Ta có :       122 1 1; 3 10, : 3 5 0, ; 1 3 10 x y AB AB AB x y h C AB               Vậy :   1 1 12 . , 10. 6 2 2 10 ABCS AB h C AB   (đvdt). Bài 27 Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC biết A(5; 2). Phương trình đường trung trực cạnh BC, đường trung tuyến CC’ lần lượt là x + y – 6 = 0 và 2x – y + 3 = 0. Tìm tọa độ các đỉnh của tam giác ABC Hướng dẫn:- Gọi B(a;b) suy ra M 5 2 ; 2 2 a b       . M nằm trên trung tuyến nên : 2a-b+14=0 (1). – B,B đối xứng nhau qua đường trung trực cho nên :    : x a t BC t R y b t      . Từ đó suy ra tọa độ N : 6 2 3 6 2 6 0 6 2 a b t x a t a b y b t x x y b a y                       3 6 6 ; 2 2 a b b a N           . Cho nên ta có tọa độ C(2a-b-6;6-a ) – Do C nằm trên đường trung tuyến : 5a-2b-9=0 (2) – Từ (1) và (2) :     2 14 0 37 37;88 , 20; 31 5 2 9 0 88 a b a B C a b b                  Bài 28Trong mặt phẳng với hệ tọa độ Oxy cho hai đường thẳng  : 3 8 0x y   , ‘:3 4 10 0x y    và điểm A(-2 ; 1). Viết phương trình đường tròn có tâm thuộc đường thẳng  , đi qua điểm A và tiếp xúc với đường thẳng  ‘. Hướng dẫn:: – Gọi tâm đường tròn là I , do I thuộc   2 3 : 2 3 ; 2 2 x t I t t y t             – A thuộc đường tròn     2 2 3 3IA t t R     (1) A(5;2) B C x+y-6=0 2x-y+3=0 M N

11. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 11 Jun . 17 – Đường tròn tiếp xúc với    3 2 3 4 2 10 13 12 ‘ 5 5 t t t R R             . (2) – Từ (1) và (2) :           2 2 2 2 213 12 3 3 25 3 3 13 12 5 t t t t t t             Bài 29 Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn hai đường tròn 2 2 ( ): – 2 – 2 1 0,C x y x y   2 2 ( ‘): 4 -5 0C x y x   cùng đi qua M(1; 0). Viết phương trình đường thẳng qua M cắt hai đường tròn ( ), ( ‘)C C lần lượt tại A, B sao cho MA= 2MB Hướng dẫn:* Cách 1. – Gọi d là đường thẳng qua M có véc tơ chỉ phương   1 ; : x at u a b d y bt        – Đường tròn        1 1 1 2 2 2: 1;1 , 1. : 2;0 , 3C I R C I R   , suy ra :           2 2 2 2 1 2: 1 1 1, : 2 9C x y C x y       – Nếu d cắt  1C tại A :   2 2 2 2 2 2 2 2 2 2 0 2 2 2 0 1 ;2 t M ab b a b t bt Ab a b a bt a b                 – Nếu d cắt  2C tại B :   2 2 2 2 2 2 2 2 2 2 0 6 6 6 0 1 ;6 t M a ab a b t at Ba a b a bt a b                   – Theo giả thiết : MA=2MB  2 2 4 *MA MB  – Ta có : 2 22 22 2 2 2 2 2 2 2 2 2 2 2 6 6 4 ab b a ab a b a b a b a b                               2 2 2 2 2 2 2 2 6 :6 6 04 36 4. 36 6 :6 6 0 b a d x yb a b a b a d x ya b a b                    * Cách 2. – Sử dụng phép vị tự tâm I tỉ số vị tự k= 1 2  . ( Học sinh tự làm ) Bài 30 Trong mặt phẳng với hệ toạ độ Oxy, hãy viết phương trình các cạnh của tam giác ABC biết trực tâm (1;0)H , chân đường cao hạ từ đỉnh B là (0; 2)K , trung điểm cạnh AB là (3;1)M . Hướng dẫn:- Theo tính chất đường cao : HK vuông góc với AC cho nên (AC) qua K(0;2) có véc tơ pháp tuyến      1; 2 : 2 2 0 2 4 0KH AC x y x y           . – B nằm trên (BH) qua H(1;0) và có véc tơ chỉ phương    1; 2 1 ; 2KH B t t      . – M(3;1) là trung điểm của AB cho nên A(5-t;2+2t). – Mặt khác A thuộc (AC) cho nên : 5-t-2(2+2t)+4=0 , suy ra t=1 . Do đó A(4;4),B(2;-2) – Vì C thuộc (AC) suy ra C(2t;2+t) ,    2 2;4 , 3;4BC t t HA      . Theo tính chất đường cao kẻ từ A :    . 0 3 2 2 4 4 0 1HA BC t t t            . Vậy : C(-2;1). H(1;0) K(0;2) M(3;1) A B C

12. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 12 Jun . 17 – (AB) qua A(4;4) có véc tơ chỉ phương       4 4 2;6

13. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 13 Jun . 17 – Giả sử (H) :       2 2 2 2 2 2 16 4 1 * 1 1 x y A H a b a b        – Mặt khác do d tiếp xúc với (H) thì hệ sau có 12 nghiệm bằng nhau :    2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 4 4 02 2 2 2 b a x a x a a bb x a y a b b x a x a b y x y x y x                              4 2 2 2 2 2 2 2 2 4 4 2 2 2 2 2 2 2 ‘ 4 4 4 4 0 4a a b a a a b a b a b a b a b b a a b                – Kết hợp với (1) :   2 2 2 2 4 2 2 2 2 2 2 2 2 2 16 4 8 16 0 4 : 1 8 44 4 8 b a a b b b b x y H a b a b a                           Bài 33 Trong mặt phẳng toạ độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng AB: x – 2y + 1 = 0, phương trình đường thẳng BD: x – 7y + 14 = 0, đường thẳng AC đi qua M(2; 1). Tìm toạ độ các đỉnh của hình chữ nhật Hướng dẫn:- Dễ nhận thấy B là giao của BD với AB cho nên tọa dộ B là nghiệm của hệ : 2 1 0 21 13 ; 7 14 0 5 5 x y B x y             – Đường thẳng (BC) qua B(7;3) và vuông góc với (AB) cho nên có véc tơ chỉ phương:     21 5 1; 2 : 13 2 5 x t u BC y t             – Ta có :    , 2 2 2 ,AC BD BIC ABD AB BD       – (AB) có  1 1; 2n    , (BD) có   1 2 2 1 2 n . 1 14 15 3 1; 7 os = 5 50 5 10 10 n n c n n              – Gọi (AC) có     2 2 2 a-7b 9 4 , os AC,BD os2 = 2cos 1 2 1 10 550 n a b c c a b                 – Do đó :    22 2 2 2 2 2 5 7 4 50 7 32 31 14 17 0a b a b a b a b a ab b            – Suy ra :         17 17 : 2 1 0 17 31 3 0 31 31 : 2 1 0 3 0 a b AC x y x y a b AC x y x y                         – (AC) cắt (BC) tại C 21 5 13 7 14 5 2 ; 5 15 3 3 3 0 x t y t t C x y                       – (AC) cắt (AB) tại A :   2 1 0 7 7;4 3 0 4 x y x A x y y               – (AD) vuông góc với (AB) đồng thời qua A(7;4) suy ra (AD) : 7 4 2 x t y t     

14. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 14 Jun . 17 – (AD) cắt (BD) tại D : 7 7 98 46 4 2 ; 15 15 15 7 14 0 x t y t t D x y                  – Trường hợp (AC) : 17x-31y-3=0 …..làm tương tự . Bài 34 Trong mặt phẳng toạ độ Oxy cho tam giác ABC, có điểm A(2; 3), trọng tâm G(2; 0). Hai đỉnh B và C lần lượt nằm trên hai đường thẳng d1: x + y + 5 = 0 và d2: x + 2y – 7 = 0. Viết phương trình đường tròn có tâm C và tiếp xúc với đường thẳng BG Hướng dẫn::- B thuộc d suy ra B : 5 x t y t      , C thuộc d’ cho nên C: 7 2x m y m     . – Theo tính chất trọng tâm :  2 9 2 2, 0 3 3 G G t m m t x y          – Ta có hệ : 2 1 2 3 1 m t m t m t             – Vậy : B(-1;-4) và C(5;1) . Đường thẳng (BG) qua G(2;0) có véc tơ chỉ phương  3;4u   , cho nên (BG):   20 15 82 13 4 3 8 0 ; 3 4 5 5 x y x y d C BG R            – Vậy đường tròn có tâm C(5;1) và có bán kính R=       2 213 169 : 5 1 5 25 C x y     Bài 35Tam giác cân ABC có đáy BC nằm trên đường thẳng : 2x – 5y + 1 = 0, cạnh bên AB nằm trên đường thẳng : 12x – y – 23 = 0 . Viết phương trình đường thẳng AC biết rằng nó đi qua điểm (3;1 Hướng dẫn:- Đường (AB) cắt (BC) tại B 2 5 1 0 12 23 0 x y x y        Suy ra : B(2;-1). . (AB) có hệ số góc k=12, đường thẳng (BC) có hệ số góc k’= 2 5 , do đó ta có : 2 12 5tan 2 2 1 12. 5 B     . Gọi (AC) có hệ số góc là m thì ta có : 2 2 55tan 2 5 21 5 m m C m m      . Vì tam giác ABC cân tại A cho nên tanB=tanC, hay ta có : 8 2 5 4 102 5 2 2 5 2 2 5 9 2 5 4 105 2 12 m m mm m m m mm m                    – Trường hợp :     9 9 : 3 1 9 8 35 0 8 8 m AC y x x y           – Trường hợp : m=12 suy ra (AC): y=12(x-3)+1 hay (AC): 12x-y-25=0 ( loại vì nó

15. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 15 Jun . 17 B(2;-1) A C x+2y-5=0 3x-4y+27=0 H K (C1) : (x – 5)2 + (y + 12)2 = 225 và (C2) : (x – 1)2 + ( y – 2)2 = 25 Hướng dẫn:- Ta có (C) với tâm I(5;-12) ,R=15. (C’) có J(1;2) và R’=5. Gọi d là tiếp tuyến chung có phương trình : ax+by+c=0 ( 2 2 0a b  ). – Khi đó ta có :        2 2 2 2 5 12 2 , 15 1 , , 5 2 a b c a b c h I d h J d a b a b           – Từ (1) và (2) suy ra : 5 12 3 6 3 5 12 3 2 5 12 3 6 3 a b c a b c a b c a b c a b c a b c                   9 3 2 2 a b c a b c        . Thay vào (1) : 2 2 2 5a b c a b    ta có hai trường hợp : – Trường hợp : c=a-9b thay vào (1) :    2 2 2 2 2 2 7 25 21 28 24 0a b a b a ab b       Suy ra : 14 10 7 14 10 7 175 10 7 : 0 21 21 21 14 10 7 14 10 7 175 10 7 : 0 21 21 21 a d x y a d x y                               – Trường hợp :      2 2 2 2 23 2 1 : 7 2 100 96 28 51 0 2 c a b b a a b a ab b           . Vô nghiệm . ( Phù hợp vì : 16 196 212 ‘ 5 15 20 400IJ R R         . Hai đường tròn cắt nhau ) . Bài 37. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) : 2 2 x y 2x 8y 8 0     . Viết phương trình đường thẳng song song với đường thẳng d: 3x+y-2=0 và cắt đường tròn theo một dây cung có độ dài bằng 6. Hướng dẫn:Đường thẳng d’ song song với d : 3x+y+m=0 – IH là khoảng cách từ I đến d’ : 3 4 1 5 5 m m IH       – Xét tam giác vuông IHB : 2 2 2 25 9 16 4 AB IH IB             2 19 ‘:3 19 01 16 1 20 21 ‘:3 21 025 m d x ym m m d x y                    Bài 38.Viết phương trình các cạnh của tam giác ABC biết B(2; -1), đường cao và đường phân giác trong qua đỉnh A, C lần lượt là : (d1) : 3x – 4y + 27 = 0 và (d2) : x + 2y- 5=0 Hướng dẫn:- Đường thẳng (BC) qua B(2;-1) và vuông góc với (AH) suy ra (BC): 2 3 1 4 x t y t       , hay :   2 1 4 3 7 0 4;3 3 4 x y x y n             – (BC) cắt (CK) tại C :   2 3 1 4 1 1;3 2 5 0 x t y t t C x y                 – (AC) qua C(-1;3) có véc tơ pháp tuyến  ;n a b  Suy ra (AC): a(x+1)+b(y-3)=0 (*). Gọi 4 6 10 2 os = 5 16 9 5 5 5 KCB KCA c          

16. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 16 Jun . 17 – Tương tự :    2 2 2 2 2 2 2 a+2b a+2b 2 os = 2 4 55 5 c a b a b a b a b                2 0 3 0 3 0 3 4 0 4 4 1 3 0 4 3 5 0 3 3 a b y y a ab b a x y x y                        – (AC) cắt (AH) tại A :  1 2 3 3 0 5 3 4 27 0 31 58231 5;3 , ; 25 254 3 5 0 25 3 4 27 0 582 25 y y x x y A Ax x y x y y                                – Lập (AB) qua B(2;-1) và 2 điểm A tìm được ở trên . ( học sinh tự lập ). Bài 39.Trong mặt phẳng với hệ tọa độ Đềcác vuông góc Oxy , xét tam giác ABC vuôngtại A, phương trình đường thẳng BC là : 3 x – y – 3 = 0, các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội tiếptam giác ABC bằng 2 . Tìm tọa độ trọng tâm G của tam giác ABC . Hướng dẫn:- Đường thẳng (BC) cắt Ox tại B : Cho y=0 suy ra x=1 , B(1;0) . Gọi A(a;0) thuộc Ox là đỉnh của góc vuông ( a khác 1 ).. Đường thẳng x=a cắt (BC) tại C :   ; 3 1a a  . – Độ dài các cạnh : 2 2 2 1 , 3 1 2 1AB a AC a BC AB AC BC a          – Chu vi tam giác : 2p=    3 3 1 1 3 1 2 1 3 3 1 2 a a a a a p             – Ta có : S=pr suy ra p= S r .(*) Nhưng S=   21 1 3 . 1 3 1 1 2 2 2 AB AC a a a     . Cho nên (*) trở thành :      2 3 2 31 3 3 3 1 1 1 1 2 3 1 2 4 1 2 3 a a a a a                 – Trọng tâm G :       1 2 3 2 3 12 1 7 4 3 3 7 4 3 2 3 63 3 ; 3 33 1 3 2 2 3 2 3 6 3 3 3 G G G G a x x G a y y                                  2 2 1 2 3 12 1 1 4 3 3 1 4 3 2 3 63 3 ; 3 33 1 3 2 2 3 2 3 6 3 3 3 G G G G a x x G a y y                                 Bài 40.Trong mặt phẳng với hệ tọa độ Oxy. Cho đường tròn (C) : 012422  yxyx và đường thẳng d : 01  yx . Tìm những điểm M thuộc đường thẳng d sao cho từ điểm M kẻ được đến Hướng dẫn:

17. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 17 Jun . 17 – M thuộc d suy ra M(t;-1-t). . Nếu 2 tiếp tuyến vuông góc với nhau thì MAIB là hình vuông ( A,B là 2 tiếp điểm ). Do đó AB=MI= IA 2 =R 2 = 6 2 2 3 . – Ta có :     2 2 2 2 2 2 8 2 3MI t t t       – Do đó :     1 2 2 2 2 2; 2 1 2 8 12 2 2 2; 2 1 t M t t t M                 . * Chú ý : Ta còn cách khác – Gọi d’ là đường thẳng qua M có hệ số góc k suy ra d’ có phương trình : y=k(x-t)-t-1, hay : kx-y-kt-t-1=0 (1) . – Nếu d’ là tiếp tuyến của (C) kẻ từ M thì d(I;d’)=R 2 2 2 6 1 k kt t k                  2 2 2 2 2 2 2 6 1 4 2 2 2 2 4 2 0t k t k t t k t t k t t                  – Từ giả thiết ta có điều kiện :      2 2 2 2 2 2 4 2 0 ‘ 4 2 4 2 4 0 4 2 1 4 2 t t t t t t t t t t t                         –   1 22 2 1 2 2 1 2 2 6 1 ‘ 19 0 2 ;2 12 t k k t t t k k M k kt                         Bài 41.Trong mặt phẳng với hệ tọa độ Oxy. Cho elip (E) : 044 22  yx .Tìm những điểm N trên elip (E) sao cho : 0 21 60ˆ FNF ( F1 , F2 là hai tiêu điểm của elip (E) ) Hướng dẫn:: – (E) : 2 2 2 2 2 1 4, 1 3 3 4 x y a b c c         – Gọi     2 2 0 0 0 0 1 0 2 0 1 2 4 4 3 3 ; 2 ; 2 2 2 2 3 x y N x y E MF x MF x F F                . Xét tam giác 1 2FMF theo hệ thức hàm số cos :   2 2 2 0 1 2 1 2 1 22 os60F F MF MF MFMF c      2 2 2 0 0 0 0 3 3 3 3 2 3 2 2 2 2 2 2 2 2 x x x x                                   0 0 2 2 2 2 2 0 0 0 0 0 00 4 2 1 3 3 9 32 13 3 12 8 4 8 12 4 4 9 94 2 33 x y x x x x y yx                             M x+y+1=0 A B I(2;1)

18. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 18 Jun . 17 – Như vậy ta tìm được 4 điểm : 1 2 3 4 4 2 1 4 2 1 4 2 1 4 2 1 ; , ; , ; , ; 3 3 3 3 3 3 3 3 N N N N                                  Bài 42.Trong mă ̣t phẳng to ̣a đô ̣Oxy cho điểm A(1;1) và đường thẳng  : 2x + 3y + 4 =0 Tìm tọa độ điểm B thuộc đường thẳng  sao cho đường thẳng AB và  hợp với nhau góc 450 . Hướng dẫn:- Gọi d là đường thẳng qua A(1;1) có véc tơ pháp tuyến  ;n a b  thì d có phương trình dạng : a(x-1)+b(y-1)=0 (*). Ta có  2;3n   . – Theo giả thiết :      20 2 2 2 2 2 3 1 os d, os45 2 2 3 13 213 a b c c a b a b a b                   2 2 1 1 : 1 1 0 5 4 0 5 55 24 5 0 5 :5 1 1 0 5 6 0 a b d x y x y a ab b a b d x y x y                             – Vậy B là giao của d với  cho nên : 1 1 2 2 5 4 0 5 6 032 4 22 32 ; , : ; 2 3 4 0 2 3 4 013 13 13 13 x y x y B B B B x y x y                             Bài 43.Trong mặt phẳng với hệ trục toạ độ Oxy cho cho hai đường thẳng 052:1  yxd . d2: 3x +6y – 7 = 0. Lập phương trình đường thẳng đi qua điểm P( 2; -1) sao cho đường thẳng đó cắt hai đường thẳng d1 và d2 tạo ra một tam giác cân có đỉnh là giao điểm của hai đường thẳng d1, d2. Hướng dẫn:: – Trước hết lập phương trình 2 đường phân giác tạo bởi 2 đường thẳng cắt nhau : 3 6 7 2 5 9 3 8 03 5 5 3 6 7 2 5 3 9 22 0 3 5 5 x y x y x y x y x y x y                     – Lập đường thẳng 1 qua P(2;-1) và vuông góc với tiếp tuyến : 9x+3y+8=0 . 1 2 1 : 3 5 0 9 3 x y x y          – Lập 2 qua P(2;-1) và vuông góc với : 3x-9y+22=0 2 2 1 : 3 5 0 3 9 x y x y           Bài 44.Trong mặt phẳng với hệ trục toạ độ Oxy cho Hypebol (H) có phương trình: 1 916 22  yx . Viết phương trình chính tắc của elip (E) có tiêu điểm trùng với tiêu điểm của (H) và ngoại tiếp hình chữ nhật cơ sở của (H). Hướng dẫn:: – (H) có    2 2 2 1 216, 9 25 5 5;0 , 5;0a b c c F F       . Và hình chữ nhật cơ sở của (H) có các đỉnh :        4; 3 , 4;3 , 4; 3 , 4;3    . – Giả sử (E) có : 2 2 2 2 1 x y a b   . Nếu (E) có tiêu điểm trùng với tiêu điểm của (H) thì ta có phương trình :  2 2 2 25 1c a b   – (E) đi qua các điểm có hoành độ 2 16x  và tung độ  2 2 2 16 9 9 1 2y a b     – Từ (1) và (2) suy ra :   2 2 2 2 40, 15 : 1 40 15 x y a b E     Bài 45.Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) có phương trình: 2 2 4 3 4 0x y x    Tia Oy cắt (C) tại A. Lập phương trình đường tròn (C’), bán kính R’ = 2 và tiếp xúc ngoài với (C) tại A

19. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 19 Jun . 17 Hướng dẫn:- (C) có I( 2 3;0 ), R= 4 . Gọi J là tâm đường tròn cần tìm : J(a;b)       2 2 ‘ : 4C x a y b     -Do (C) và (‘) tiếp xúc ngoài với nhau cho nên khoảng cách IJ =R+R’   2 2 2 2 2 3 4 2 6 4 3 28a b a a b          – Vì A(0;2) là tiếp điểm cho nên :       2 2 0 2 4 2a b    – Do đó ta có hệ :     2 2 2 2 2 222 2 3 36 4 3 24 4 02 4 a b a a b a b ba b                  – Giải hệ tìm được : b=3 và a=       2 2 3 ‘ : 3 3 4C x y     . * Chú ý : Ta có cách giải khác . – Gọi H là hình chiếu vuông góc của J trên Ox suy ra OH bằng a và JH bằng b – Xét các tam giác đồng dạng : IOA và IHJ suy ra : 4 2 3 2 IJ 6 2 3 IA IO OA IH HJ ba       – Từ tỷ số trên ta tìm được : b=3 và a= 3 . Bài 46.Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có cạnh AB: x -2y -1 =0, đường chéo BD: x- 7y +14 = 0 và đường chéo AC đi qua điểm M(2;1). Tìm toạ độ các đỉnh của hình chữ nhật Hướng dẫn:- Hình vẽ : ( Như bài 12 ). – Tìm tọa độ B là nghiệm của hệ :   2 1 0 7;3 7 14 0 x y B x y        . – Đường thẳng (BC) qua B(7;3) và       7 1; 2 : 3 2 BC x t AB u BC y t            1 2 17 0 2 BCx y k       . Mặt khác : 1 1 1 1 17 2, tan 1 17 2 31 7 2 BD ABk k         – Gọi (AC) có hệ số góc là k 2 1 2 7 1 2tan 37 3tan 2 17 1 tan 41 1 7 9 k k k k               – Do đó : 17 28 4 3 21 4 7 1 3 7 31 28 4 3 21 1 k k k k k k k k                 – Trường hợp : k=1 suy ra (AC) : y=(x-2)+1 , hay : x-y-1=0 . – C là giao của (BC) với (AC) :   7 3 2 1, 6;5 1 0 x t y t t C x y              – A là giao của (AC) với (AB) :   7 3 2 0, 1;0 2 1 0 x t y t t A x y             – (AD)

20. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 20 Jun . 17 – D là giao của (AD) với (BD) :   2 2 0 0;2 7 14 0 x y D x y        – Trường hợp : k=- 17 31 cách giải tương tự ( Học sinh tự làm ). Bài 47. Trong mp (Oxy) cho đường thẳng () có phương trình: x – 2y – 2 = 0 và hai điểm A (-1;2); B (3;4). Tìm điểm M() sao cho 2MA2 + MB2 có giá trị nhỏ nhất Hướng dẫn:- M thuộc  suy ra M(2t+2;t ) – Ta có :     2 22 2 2 2 2 3 2 5 8 13 2 10 16 26MA t t t t MA t t           Tương tự :     2 22 2 2 1 4 5 12 17MB t t t t       – Do dó : f(t)=  2 2 15 4 43 ‘ 30 4 0 15 t t f t t t         . Lập bảng biến thiên suy ra min f(t) = 641 15 đạt được tại 2 26 2 ; 15 15 15 t M          Bài chúng tôi đường tròn (C): x2 + y2 – 2x – 6y + 6 = 0 và điểm M (2;4) Viết phương trình đường thẳng đi qua M cắt đường tròn tại 2 điểm A và B, sao cho M là trung điểm của AB Hướng dẫn:- Đường tròn (C) :      2 2 /( )1 3 4 1;3 , 2, 1 1 4 2 0M Cx y I R P M             nằm trong hình tròn (C) . – Gọi d là đường thẳng qua M(2;4) có véc tơ chỉ phương   2 ; : 4 x at u a b d y bt         – Nếu d cắt (C) tại A,B thì :           2 2 2 2 2 1 1 4 2 2 0 1at bt a b t a b t          ( có 2 nghiệm t ) . Vì vậy điều kiện :       2 2 2 2 2 ‘ 2 3 2 3 0 *a b a b a ab b         – Gọi    1 1 2 22 ;4 , 2 ;4A at bt B at bt     M là trung điểm AB thì ta có hệ :         1 2 1 2 1 2 1 2 1 2 4 4 0 0 8 8 0 a t t a t t t t b t t b t t                     . Thay vào (1) khi áp dụng vi ét ta được :   1 2 2 2 2 2 4 0 0 : : 6 0 1 1 a b x y t t a b a b d d x y a b                       Bài 49.Viết phương trình các tiếp tuyến của e líp (E): 2 2 1 16 9 x y   , biết tiếp tuyến đi qua điểmA(4;3) Hướng dẫn:- Giả sử đường thẳng d có véc tơ pháp tuyến  ;n a b  qua A(4;3) thì d có phương trình là :a(x-4)+b(y-3)=0 (*) , hay : ax+by-4a-3b (1) . – Để d là tiếp tuyến của (E) thì điều kiện cần và đủ là :   22 2 .16 .9 4 3a b a b   2 2 2 2 0 : 3 0 16 9 16 24 9 24 0 0 : 4 0 a d y a b a ab b ab b d x                  Bài 50.Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): x2 + y2 – 2x – 2my + m2 – 24 = 0 có tâm I và đường thẳng : mx + 4y = 0. Tìm m biết đường thẳng  cắt đường tròn (C) tại hai điểm phân biệt A,B thỏa mãn diện tích tam giác IAB bằng 12. Hướng dẫn:- (C) :     2 2 1 25 (1; ), 5x y m I m R      .

21. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 21 Jun . 17 – Nếu d : mx +4y=0 cắt (C) tại 2 điểm A,B thì   2 2 2 2 4 16 4 2 24 0 1 16 4 m y x m m x x m                     – Điều kiện : 2 ‘ 25 0m m R      . Khi đó gọi 1 1 2 2; , ; 4 4 m m A x x B x x                  2 2 2 2 2 2 1 2 1 2 1 2 16 25 8 16 4 16 m m m AB x x x x x x m            – Khoảng cách từ I đến d = 2 2 4 5 16 16 m m m m m     – Từ giả thiết : 2 2 22 2 51 1 25 25 . .8 . 4 5 12 2 2 1616 16 mm m S AB d m mm m             2 22 2 2 2 25 5 3 25 25 9 16 16 m m m m m m         – Ta có một phương trình trùng phương , học sinh giải tiếp . Bài 51.Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x – y – 2 = 0, phương trình cạnh AC: x + 2y – 5 = 0. Biết trọng tâm của tam giác G(3; 2). Viết phương trình cạnh BC Hướng dẫn: – (AB) cắt (AC) tại A :   2 0 3;1 2 5 0 x y A x y         – B nằm trên (AB) suy ra B(t; t-2 ), C nằm trên (AC) suy ra C(5-2m;m) – Theo tính chất trọng tâm :     2 8 3 2 1;22 13 1 7 5 5;3 2 3 G G t m x m Ct m t m t m t B y                       Bài 52.Viết phương trình đường tròn đi qua hai điểm A(2; 5), B(4;1) và tiếp xúc với đường thẳng có phương trình 3x – y + 9 = 0. Hướng dẫn: Gọi M là trung điểm AB suy ra M(3;3 ) . d’ là đường trung trực của AB thì d’ có phương trình : 1.(x-3)- 2(y-3)=0 , hay : x-2y+3=0 . – Tâm I của (C) nằm trên đường thẳng d’ cho nên I(2t-3;t) (*) – Nếu (C) tiếp xúc với d thì    3 2 3 9 5 10 , 210 10 t t t h I d R t R         . (1) – Mặt khác : R=IA=     2 2 5 2 5t t   . (2) . – Thay (2) vào (1) :      2 2 2 210 5 2 5 4 5 30 50 10 2 t t t t t t        2 6 34 12 2 0 6 34 t t t t            . Thay các giá trị t vào (*) và (1) ta tìm được tọa độ tâm I và bán kính R của (C) . * Chú ý : Ta có thể sử dụng phương trình (C) : 2 2 2 2 0x y ax by c     ( có 3 ẩn a,b,c) – Cho qua A,B ta tạo ra 2 phương trình . Còn phương trình thứ 3 sử dụng điều kiện tiếp xúc của (C) và d : khoảng cách từ tâm tới d bằng bán kính R .

22. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 22 Jun . 17 Bài chúng tôi đường tròn (C): x2 + y2 – 2x + 4y + 2 = 0. Viết phương trình đường tròn (C’) tâm M(5, 1) biết (C’) ắt (C) tại các điểm A, B sao cho 3AB . Hướng dẫn:- Đường tròn (C) :       2 2 1 2 3 1; 2 , 3x y I R       . – Gọi H là giao của AB với (IM). Do đường tròn (C’) tâm M có bán kính R’ = MA . Nếu AB= 3 IA R  , thì tam giác IAB là tam giác đều , cho nên IH= 3. 3 3 2 2  ( đường cao tam giác đều ) . Mặt khác : IM=5 suy ra HM= 3 7 5 2 2   . – Trong tam giác vuông HAM ta có 2 2 2 249 3 13 ‘ 4 4 4 AB MA IH R      – Vậy (C’) :     2 2 5 1 13x y    . Bài 54.Trong mÆt ph¼ng víi hÖ täa ®é Oxy cho ®-êng trßn (C) cã ph-¬ng tr×nh (x-1)2 + (y+2)2 = 9 vµ ®-êng th¼ng d: x + y + m = 0. T×m m ®Ó trªn ®-êng th¼ng d cã duy nhÊt mét ®iÓm A mµ tõ ®ã kÎ ®-îc hai tiÕp tuyÕn AB, AC tíi ®-êng trßn (C) (B, C lµ hai tiÕp ®iÓm) sao cho tam gi¸c ABC vu”ng. Hướng dẫn: – (C) có I(1;-2) và bán kính R=3 . Nếu tam giác ABC vuông góc tại A ( có nghĩa là từ A kẻ được 2 tiếp tuyến tới (C) và 2 tiếp tuyến vuông góc với nhau ) khi đó ABIC là hình vuông . Theo tính chất hình vuông ta có IA= IB 2 (1) . – Nếu A nằm trên d thì A( t;-m-t ) suy ra :     2 2 1 2IA t t m     . Thay vào (1) :     2 2 1 2 3 2t t m       2 2 2 2 1 4 13 0t m t m m       (2). Để trên d có đúng 1 điểm A thì (2) có đúng 1 nghiệm t , từ đó ta có điều kiện :     22 10 25 0 5 0 5m m m m             .Khi đó (2) có nghiệm kép là :  1 2 0 1 5 1 3 3;8 2 2 m t t t A            Bài 55.Trong mặt phẳng toạ độ Oxy cho hai đường thẳng (d1) : 4x – 3y – 12 = 0 và (d2): 4x + 3y – 12 = 0. Tìm toạ độ tâm và bán kính đường tròn nội tiếp tam giác có 3 cạnh nằm trên (d1), (d2), trục Oy. Hướng dẫn:- Gọi A là giao của  1 2 4 3 12 0 , : 3;0 Ox 4 3 12 0 x y d d A A x y          – Vì (BC) thuộc Oy cho nên gọi B là giao của 1d với Oy : cho x=0 suy ra y=-4 , B(0;-4) và C là giao của 2d với Oy : C(0;4 ) . Chứng tỏ B,C đối xứng nhau qua Ox , mặt khác A nằm trên Ox vì vậy tam giác ABC là tam giác cân đỉnh A . Do đó tâm I đường tròn nội tiếp tam giác thuộc Ox suy ra I(a;0). – Theo tính chất phân giác trong : 5 5 4 9 4 4 4 IA AC IA IO OA IO AO IO IO         4 4.3 4 9 9 3 OA IO    . Có nghĩa là I( 4 ;0 3 ) I M A B H I(1;-2) B C A x+y+m=0

23. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 23 Jun . 17 – Tính r bằng cách :    5 8 51 1 15 1 1 18 6 . .5.3 2 2 2 2 2 15 5 AB BC CA S BC OA r r r             . Bài 56.Trong mặt phẳng toạ đ ộ Oxy cho điểm C(2;-5 ) và đường thẳng : :3 4 4 0x y    . Tìm trên  hai điểm A và B đối xứng nhau qua I(2;5/2) sao cho diện tích tam giác ABC bằng15 Hướng dẫn:- Nhận xét I thuộc  , suy ra A thuộc  : A(4t;1+3t) . Nếu B đối xứng với A qua I thì B có tọa độ B(4-4t;4+3t)     2 2 16 1 2 9 1 2 51 2AB t t t       – Khoảng cách từ C(2;-5) đến  bằng chiều cao của tam giác ABC : 6 20 4 6 5     – Từ giả thiết :         0 0;1 , 4;41 1 . 5.1 2 .6 15 1 2 1 2 2 1 4;4 , 0;1 t A B S AB h t t t A B              Bài 57.Trong mặt phẳng với hệ toạ độ Oxy cho elíp 2 2 ( ): 1 9 4 x y E   và hai điểm A(3;-2) , B(-3;2) Tìm trên (E) điểm C có hoành độ và tung độ dương sao cho tam giác ABC có diện tích lớn nhất. Hướng dẫn:- A,B có hoành độ là hoành độ của 2 đỉnh của 2 bán trục lớn của (E) , chúng nằm trên đường thẳng y-2=0 . C có hoành độ và tung độ dương thì C nằm trên cung phần tư thứ nhất – Tam giác ABC có AB=6 cố định . Vì thế tam giác có diện tích lớn nhất khi khoảng cách từ C đến AB lớn nhất . – Dễ nhận thấy C trùng với đỉnh của bán trục lớn (3;0) Bài 58.Trong mÆt ph¼ng Oxy cho tam gi¸c ABC biÕt A(2; – 3), B(3; – 2), cã diÖn tÝch b”ng 3 2 vµ träng t©m thuéc ®-êng th¼ng  : 3x – y – 8 = 0. T×m täa ®é ®Ønh C. Hướng dẫn:- Do G thuộc  suy ra G(t;3t-8). (AB) qua A(2;-3) có véc tơ chỉ phương  1;1u AB    , cho nên (AB) : 2 3 5 0 1 1 x y x y        . Gọi M là trung điểm của AB : M 5 5 ; 2 2       . – Ta có : 5 5 5 11 ; 3 8 ; 3 2 2 2 2 GM t t t t                     . Giả sử C 0 0;x y , theo tính chất trọng tâm ta có :    0 0 0 0 5 2 5 22 2 2 5;9 19 1 9 1911 3 8 2 3 2 x t t x t GC GM C t t y t y t t                                    – Ngoài ra ta còn có : AB= 2 ,      3 2 5 9 19 8 4 3 , 10 10 t t t h C         – Theo giả thiết :   4 31 1 3 . , 2 2 4 3 3 10 2 2 210 t S AB h C t           2 2 4 3 5 7 6 5 ; 7 9 5 3 3 2 4 3 90 9 24 29 0 4 3 5 6 5 7 ;9 5 7 3 3 t C t t t t C                                    Bài 59.Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có tâm 1 ( ;0) 2 I

24. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 24 Jun . 17 Đường thẳng AB có phương trình: x – 2y + 2 = 0, AB = 2AD và hoành độ điểm A âm. Tìm tọa độ các đỉnh của hình chữ nhật đó Hướng dẫn:- Do A thuộc (AB) suy ra A(2t-2;t) ( do A có hoành độ âm cho nên t<1) – Do ABCD là hình chữ nhật suy ra C đối xứng với A qua I : C 3 2 ;t t  . – Gọi d’ là đường thẳng qua I và vuông góc với (AB), cắt (AB) tại H thì : 1 ‘: 2 2 x t d y t        , và H có tọa độ là H 0;1 . Mặt khác B đối xứng với A qua H suy ra B 2 2 ;2t t  . – Từ giả thiết : AB=2AD suy ra AH=AD , hay AH=2IH     2 2 1 2 2 1 2 1 4 t t        22 1 1 05 5 10 5 4. 1 1 1 1 2 14 t t t t t t t                    – Vậy khi t =         1 2;0 , 2;2 , 3;0 , 1; 2 2 A B C D    . * Chú ý : Ta còn có cách giải khác nhanh hơn – Tính   1 0 2 52 ; 25 h I AB     , suy ra AD=2 h(I,AB)= 5 – Mặt khác :     2 2 2 2 2 2 22 5 25 5 4 4 4 4 AB AD IA IH IH IH AD         IA=IB = 5 2 -Do đó A,B là giao của (C) tâm I bán kính IA cắt (AB) . Vậy A,B có tọa độ là nghiệm của hệ :    2 2 2 2 2 0 2;0 , 2;21 5 2 2 x y A B x y                    (Do A có hoành độ âm – Theo tính chất hình chữ nhật suy ra tọa độ của các đỉnh còn lại : C(3;0) và D(-1;-2) Bài 60.Trong mặt phẳng Oxy cho tam giác ABC với A(1; -2), đường cao : 1 0CH x y   , phân giác trong :2 5 0BN x y   .Tìm toạ độ các đỉnh B,C và tính diện tích tam giác ABC Hướng dẫn:- Đường (AB) qua A(1;-2) và vuông góc với (CH) suy ra (AB): 1 2 x t y t       . – (AB) cắt (BN) tại B: 1 2 5 2 5 0 x t y t t x y               Do đó B(-4;3).Ta có : 1 2 1 1, 2 tan 1 2 3 AB BNk k            – Gọi A’ đối xứng với A qua phân giác (BN) thì A’ nằm trên (AB). Khi đó A’ nằm trên d vuông góc với (BN) 1 2 : 2 x t d y t        C H B N A(1;-2) x-y+1=0 2x+y+5=0

25. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 25 Jun . 17 – d cắt (BN) tại H :   1 2 : 2 1 1; 3 2 5 0 x t H y t t H x y                  . – A’ đối xứng với A qua H suy ra A'(-3;-4) . (BC) qua B,A’ suy ra :  1; 7u      4 : 3 7 x t BC y t        . (BC) cắt (CH) tại C: 4 3 13 9 3 7 ; 4 4 4 1 0 x t y t t C x y                      – Tính diện tích tam giác ABC : – Ta có :   2 5 1 1 9 9 10 . ( , ) .2 59 2 2 4, 2 2 2 2 ABC AB S AB h C AB h C AB          Bài 61.Trong mặt phẳng với hệ trục toạ độ Oxy cho hình chữ nhật ABCD, có diện tích bằng 12, tâm I là giao điểm của đường thẳng 03:1  yxd và 06:2  yxd . Trung điểm của một cạnh là giao điểm của d1 với trục Ox. Tìm toạ độ các đỉnh của hình chữ nhật Hướng dẫn:- Theo giả thiết , tọa độ tâm I 3 0 9 3 ; 6 0 2 2 x y I x y              . Gọi M là trung điểm của AD thì M có tọa độ là giao của : x-y-3=0 với Ox suy ra M(3;0). Nhận xét rằng : IM

26. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 26 Jun . 17         2 2 2 2 2 3 2 2 2 6 3 2 4 3 4 0(1)at bt a b t a b t           – Điều kiện :     2 2 2 2 2 3 2 0 ‘ 4 3 4 3 2 0 a b a b a b            (*). Khi đó  1 12 ;1 ,A at bt  và tọa độ của B :  2 22 ;1B at bt  , suy ra nếu M là trung điểm của AB thì : 4+a  1 2 1 24 0t t t t     – Kết hợp với 2 1 2 1 2 2 22 2 2 3 2 3 4 4 2 3 2 2 3 2 3 t t t t t t a b b a b a             – Áp dụng vi ét cho (1) :   1 2 2 2 4 3 2 1 2 1 0 3 : 3 2 3 b a x y x y t t b a d a b a b a a                – Vậy d : 3(x-2)=(y-1) hay d : 3x-y-5=0 . Bài 63.Trong mặt phẳng Oxy , cho đường thẳng  có phương trình x+2y-3=0 và hai điểm A(1;0),B(3;-4). Hãy tìm trên đường thẳng  một điểm M sao cho : 3MA MB   là nhỏ nhất Hướng dẫn:- D M  3 2 ;M t t   có nên ta có :    2 2; ,3 6 ; 3 12MA t t MB t t        . Suy ra tọa độ của       2 2 3 8 ; 4 14 3 8 4 14MA MB t t MA MB t t             . – Vậy : f(t) =     2 2 2 8 4 14 80 112 196t t t t     . Xét g(t)= 2 80 112 196t t  , tính đạo hàm g'(t)= 160t+112. g'(t)=0 khi 112 51 51 15.169 196 80 80 80 80 t g              – Vậy min 3 196 14MA MB     , đạt được khi t= 51 80  và 131 51 ; 40 80 M        Bài 64.Trong mặt phẳng Oxy , cho hai đường tròn :   2 2 1 : 13C x y  và     2 2 2 : 6 25C x y   cắt nhau tại A(2;3).Viết phương trình đường thẳng đi qua A và cắt    1 2,C C theo hai dây cung có độ dài bằng nhau Hướng dẫn: – Từ giả thiết :        1 2: 0;0 , 13. ; 6;0 , ‘ 5C I R C J R   – Gọi đường thẳng d qua A(2;3) có véc tơ chỉ phương   2 ; : 3 x at u a b d y bt         – d cắt  1C tại A, B :    2 2 2 2 2 2 2 2 2 3 3 2 2 3 0 13 x at a b y bt a b t a b t t a b x y                          2 2 2 2 2 3 3 2 ; b b a a a b B a b a b          . Tương tự d cắt  2C tại A,C thì tọa độ của A,C là nghiệm của hệ :     2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 3 10 6 2 3 8 3 3 ; 6 25 x at a b a ab b a ab b y bt t C a b a b a b x y                          – Nếu 2 dây cung bằng nhau thì A là trung điểm của A,C . Từ đó ta có phương trình :

27. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 27 Jun . 17     2 2 2 2 2 2 2 2 2 0 ; : 2 3 310 6 2 4 6 9 0 3 3 ;

28. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 28 Jun . 17 – h(C,AB)=    2 3 3 12 9 3 15 21 5 5 t t t      . Do đó :   1 . , 2 ABCS AB h C AB    32 17 2632 ; 15 21 15 211 11 15 5 515 5 15 21 11 202 2 25 4 1;0 15 3 t Ct t t S t t t C                         Bài 67.Trong mặt phẳng Oxy , cho hình vuông có đỉnh (-4;5) và một đường chéo có phương trình : 7x- y+8=0 . Viết phương trình chính tắc các cạnh hình vuông Hướng dẫn:- Gọi A(-4;8) thì đường chéo (BD): 7x-y+8=0. Giả sử B(t;7t+8) thuộc (BD). – Đường chéo (AC) qua A(-4;8) và vuông góc với (BD) cho nên có véc tơ chỉ phương     4 7 4 5 7; 1 : 7 39 0 5 7 1 x t x y u AC x y y t                  . Gọi I là giao của (AC) và (BD) thì tọa độ của I là nghiệm của hệ :   4 7 1 1 9 5 ; 3;4 2 2 2 7 8 0 x t y t t I C x y                     – Từ B(t;7t+8) suy ra :    4;7 3 , 3;7 4BA t t BC t t        . Để là hình vuông thì BA=BC : Và BAvuông góc với BC       2 0 4 3 7 3 7 4 0 50 50 0 1 t t t t t t t t                    0 0;8 1 1;1 t B t B         . Tìm tọa độ của D đối xứng với B qua I         0;8 1;1 1;1 0;8 B D B D       – Từ đó : (AB) qua A(-4;5) có     4 5 4;3 : 4 3 AB x y u AB       (AD) qua A(-4;5) có     4 5 3; 4 : 3 4 AD x y u AB         (BC) qua B(0;8) có     8 3; 4 : 3 4 BC x y u BC        (DC) qua D(-1;1) có     1 1 4;3 : 4 3 DC x y u DC       * Chú ý : Ta còn cách giải khác – (BD) : 7 8y x  , (AC) có hệ số góc 1 7 k   và qua A(-4;5) suy ra (AC): 31 7 7 x y   . -Gọi I là tâm hình vuông :   2 2 3;47 8 31 7 7 A C I A C I I I C C x x x y y y Cy x x y                – Gọi (AD) có véc tơ chỉ phương       0 ; , : 1;7 7 os45u a b BD v a b uv u v c           2 2 7 5a b a b    . Chọn a=1, suy ra     3 3 3 : 4 5 8 4 4 4 b AD y x x      

29. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 29 Jun . 17 Tương tự :         4 4 1 3 3 7 : 4 5 , : 3 4 3 3 3 4 4 4 AB y x x BC y x x            và đường thẳng (DC):   4 4 3 4 8 3 3 y x x       Bài 68.Trong mặt phẳng với hệ tọa độ Oxy, cho điểm E(-1;0) và đường tròn ( C ): x2 + y2 – 8x – 4y – 16 = 0. Viết phương trình đường thẳng đi qua điểm E cắt ( C ) theo dây cung MN có độ dài ngắn nhất. Hướng dẫn:-         2 2 : 4 2 36 4;2 , 6C x y I R      – Nhận xét : P/(M,C)=1+8-16=-7<0 suy ra E nằm trong (C) – Gọi d là đường thẳng qua E(-1;0) có véc tơ chỉ phương   1 ; : x at u a b d y bt         – Đường thẳng d cắt (C) tại 2 điểm M,N có tọa độ là nghiệm của hệ :        2 2 2 2 2 1 2 5 2 7 0 4 2 36 x at y bt a b t a b t x y                   . (1) – Gọi M(-1+at;bt),N( -1+at’;bt’) với t và t’ là 2 nghiệm của (1). Khi đó độ dài của dây cung MN     2 2 2 22 2 2 2 2 2 2 2 2 2 2 ‘ 2 18 20 11 ‘ ‘ ‘ a ab b a t t b t t t t a b a b a b a b                – 2 2 2 2 18 20 11 18 20 11 2 2 1 1 b b t t ba a t t ab a                            . Xét hàm số f(t)= 2 2 18 20 11 1 t t t    – Tính đạo hàm f'(t) cho bằng 0 , lập bảng biến thiên suy ra GTLN của t , từ đó suy ra t ( tức là suy ra tỷ số a/b ) ). Tuy nhiên cách này dài * Chú ý : Ta sử dụng tính chất dây cung ở lớp 9 : Khoảng cách từ tâm đến dây cung càng nhỏ thì dây cung càng lớn – Gọi H là hình chiếu vuông góc của I trên đường thẳng d bất kỳ qua E(-1;0). Xét tam giác vuông HIE ( I là đỉnh ) ta luôn có : 2 2 2 2 IH IE HE IE IH IE     . Do đó IH lớn nhất khi HE=0 có nghĩa là H trùng với E . Khi đó d cắt (C) theo dây cung nhỏ nhất . Lúc này d là đường thẳng qua E và vuông góc với IE cho nên d có véc tơ pháp tuyến  5;2n IE    , do vậy d: 5(x+1)+2y=0 hay : 5x+2y+5=0 . Bài chúng tôi tam giác ABC cân tại A, biết phương trình đường thẳng AB, BC lần lượt là: x + 2y – 5 = 0 và 3x – y + 7 = 0. Viết phương trình đường thẳng AC, biết rằng AC đi qua điểm F(1; – 3). Hướng dẫn:- Ta thấy B là giao của (AB) và (BC) cho nên tọa độ B là nghiệm của hệ : 9 2 5 0 7 3 7 0 22 7 x x y x y y                9 22 ; 7 7 B         . Đường thẳng d’ qua A vuông góc với (BC) có     1 3; 1 1;3 3 u n k         . (AB) có A B C x+2y-5=0 3x-y+7=0 F(1;-3)

30. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 30 Jun . 17 1 2 ABk   . Gọi (AC) có hệ số góc là k ta có phương trình : 11 1 1 15 5 33 11 82 3 3 15 5 3 1 1 15 5 3 45 31 1 2 3 3 7 kk k kk k k k k kk k                             – Với k=-     1 1 : 1 3 8 23 0 8 8 AC y x x y         – Với k=     4 4 : 1 3 4 7 25 0 7 7 AC y x x y         Bài 70.Trong mặt phẳng Oxy, hãy xác định tọa độ các đỉnh của tam giác ABC vuông cân tại A. Biết rằng cạnh huyền nằm trên đường thẳng d: x + 7y – 31 = 0, điểm N(7;7) thuộc đường thẳng AC, điểm M(2;-3) thuộc AB và nằm ngoài đoạn AB Hướng dẫn:- Gọi A     0 0 0 0 0 0; 2; 3 , 7; 7x y MA x y NA x y         . – Do A là đỉnh của tam giác vuông cân cho nên AM vuông góc với AN hay ta có :       2 2 0 0 0 0 0 0 0 0. 0 2 7 3 7 0 9 4 7 0MA NA x x y y x y x y                – Do đó A nằm trên đường tròn (C) :     2 2 0 03 2 20x y    – Đường tròn (C) cắt d tại 2 điểm B,C có tọa độ là nghiệm của hệ phương trình :         2 2 2 2 2 31 7 31 73 2 20 50 396 768 028 7 2 207 31 0 x y x yx y y yy yx y                          – Do đó ta tìm được : 198 2 201 99 201 99 201 ; 50 25 25 y y       , tương ứng ta tìm được các giá trị của x : 82 7 201 82 7 201 ; 25 25 x x     . Vậy : 82 7 201 99 201 ; 25 25 A         và tọa độ của điểm 82 7 201 99 201 ; 25 25 A         Bài 71. Trong mặt phẳng Oxy , cho hai đường thẳng d1: 2x + y + 5 = 0, d2: 3x + 2y – 1 = 0 và điểm G(1;3). Tìm tọa độ các điểm B thuộc d1 và C thuộc d2 sao cho tam giác ABC nhận điểm G làm trọng tâm. Biết A là giao điểm của hai đường thẳng d1 và 2d Hướng dẫn:- Tìm tọa độ A là nghiệm của hệ :   2 5 0 11 11;17 3 2 1 0 17 x y x A x y y                – Nếu C thuộc    1 2; 2 5 , 1 2 ; 1 3d C t t B d B m m        – Theo tính chất trọng tâm của tam giác ABC khi G là trọng tâm thì : 2 10 1 2 133 11 2 3 2 3 2 3 3 t m t m t m t m                13 2 13 2 35 2 13 2 3 2 24 24 t m t m t m m m m                    – Vậy ta tìm được : C(-35;65) và B( 49;-53). A B C G M 2x+y+5=0 3x+2y-1=0

31. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 31 Jun . 17 Bài 72.Trong mặt phẳng Oxy, cho đường tròn (C): x2 + y2 – 6x + 2y – 15 = 0. Tìm tọa độ điểm M trên đường thẳng d: 3x – 22y – 6 = 0, sao cho từ điểm M kẻ được tới (C) hai tiếp tuyến MA, MB (A, B là các tiếp điểm) mà đường thẳng AB đi qua điểm C (0;1). Hướng dẫn:- (C) :     2 2 3 1 25x y    , có I(3;-1) và R=5 . – Gọi    1 1 2 2; , ;A x y B x y là 2 tiếp điểm của 2 tiếp tuyến kẻ từ M . – Gọi M 0 0 0 0; 3 22 6 0 (*)x y d x y     – Hai tiếp tuyến của (C) tại A,B có phương trình là : –        1 13 3 1 1 25 1x x y y      và : –        2 23 3 1 1 25 2x x y y      – Để 2 tiếp tuyến trở thành 2 tiếp tuyến kẻ từ M thì 2 tiếp tuyến phải đi qua M ; –        1 0 1 03 3 1 1 25 3x x y y      và –        2 0 2 03 3 1 1 25 4x x y y      Từ (3) và (4) chứng tỏ (AB) có phương trình là :        0 03 3 1 1 25 5x x y y      – Theo giả thiết thì (AB) qua C(0;1) suy ra :    0 0 0 03 3 2 1 25 3 2 14 0(6)x y x y          – Kết hợp với (*) ta có hệ : 0 0 0 0 0 0 1 3 22 6 0 16 ; 116 3 2 14 0 3 3 y x y M x y x                        Bài 73.Trong mặt phẳng Oxy : Cho hai điểm A(2 ; 1), B( – 1 ; – 3) và hai đường thẳng d1: x + y + 3 = 0; d2 : x – 5y – 16 = 0. Tìm tọa độ các điểm C,D lần lượt thuộc d1 và d2 sao cho tứ giác ABCD là hình bình hành. Hướng dẫn:- Trường hợp : Nếu AB là một đường chéo +/ Gọi I( 1 ; 1 2       , đường thẳng qua I có hệ số góc k suy ra d: y=k(x-1/2)-1 +/ Đường thẳng d cắt 1d tại C     4 1 2 11 2 7 2 3 0 2 1 k x ky k x k yx y k                          4 7 2 ; 2 1 2 1 k k C k k          . Tương tự d cắt 2d tại B : 1 1 2 5 16 0 y k x x y               – Từ đó suy ra tọa độ của B . Để ABCD là hình bình hành thì : AB=CD .Sẽ tìm được k * Cách khác : – Gọi C(t;-t-3) thuộc 1d , tìm B đối xứng với C qua I suy ra D (1-t;t+1) – Để thỏa mãn ABCD là hình bình hành thì D phải thuộc 2d :  1 5 1 16 0t t      Suy ra t=- 10 3 và D 13 7 ; 3 3       và C 10 1 ; 3 3       chúng tôi – Trường hợp AB là một cạnh của hình bình hành . +/ Chọn C (t;-t-3) thuộc 1d và D (5m+16;m) thuộc 2d M A B I(3;-1) H C(0;1) 3x-22y-6=0

32. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 32 Jun . 17 +/ Để ABCD là hình bình hành thì : AC=BD AB

33. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 33 Jun . 17 Hướng dẫn:- (C):       2 2 3 1 4 3; 1 , 2x y I R       – Giả sử đường thẳng qua P có véc tơ pháp tuyến      ; : 1 3 0n a b d a x b y      Hay : ax+by-(a+3b)=0 (*). – Để d là tiếp tuyến của (C) thì khoảng cách từ tâm I đến d bằng bán kính : 2 2 2 2 3 3 2 4 2 2 a b a b a b a b a b             2 2 2 2 2 4 3 0a b a b ab b               0 1 0 1 0 4 3 0 4 4 1 3 0 3 4 6 0 3 3 b a x x b a b b a a x a y x y                        -Ta có : PI=2 5 , PE=PF= 2 2 20 4 4PI R    . Tam giác IEP đồng dạng với IHF suy ra : IF 2 5 IF 2 4 5 , IH 2 5 5 5 5 EP IP EP IH EH EH IE          2 8 1 1 8 8 32 2 5 chúng tôi 2 2 55 5 5 5 EPFPH PI IH S         Bài 77.Trong mpOxy, cho 2 đường thẳng d1: 2x + y  1 = 0, d2: 2x  y + 2 = 0. Viết pt đường tròn (C) có tâm nằm trên trục Ox đồng thời tiếp xúc với d1 và d2. Hướng dẫn:- Gọi I(a;0) thuộc Ox . Nếu (C) tiếp xúc với 2 đường thẳng thì :       1 2 1 , , , h I d h I d h I d R        2 1 2 2 1 5 5 2 1 2 5 a a a R           . Từ (1) : a= 1 4 , thay vào (2) : R=   2 25 1 5 : 10 4 100 C x y          Bài 78.Trong mpOxy, cho 2 đường thẳng d1: 2x  3y + 1 = 0, d2: 4x + y  5 = 0. Gọi A là giao điểm của d1 và d2. Tìm điểm B trên d1 và điểm C trên d2 sao cho ABC có trọng tâm G(3; 5). Hướng dẫn:- Tọa độ A là nghiệm của hệ : 2 3 1 0 7 3 ; 4 5 0 8 2 x y A x y             –    1 21 2 ;1 3 , ;5 4B d B t t C d C m m       . Tam giác ABC nhận G(3;5) làm trọng tâm : 7 57 1 2 9 2 8 8 3 15 1 3 5 4 15 3 4 2 2 t m t m t m t m                          I(3;-1)E F P(1;3) O x y H

34. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 34 Jun . 17 Giải hệ trên suy ra : 31 67 88 ; 5 5 5 207 207 257 ; 40 40 10 t B m C                     Bài chúng tôi đường tròn (C): x2 + y2  2x  4y + 3 = 0. Lập pt đường tròn (C’) đối xứng với (C) qua đường thẳng : x  2 = 0 Hướng dẫn:Ta có (C):       2 2 1 2 2 1;2 , 2x y I R      – Gọi J là tâm của (C’) thì I và J đối xứng nhau qua d : x=2 suy ra J(3;2) và (C) có cùng bán kính R . Vậy (C’):     2 2 3 2 2x y    đối xứng với (C) qua d . Bài 80.Trong mpOxy, cho ABC có trục tâm H 13 13 ; 5 5       , pt các đường thẳng AB và AC lần lượt là: 4x  y  3 = 0, x + y  7 = 0. Viết pt đường thẳng chứa cạnh BC. Hướng dẫn:- Tọa độ A là nghiệm của hệ : 4 3 0 7 0 x y x y        Suy ra : A(2;5).   3 12 ;

35. chúng tôi – Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán Tập các bài Toán về Đường thẳng trong các đề thi Sưu tầm & biên soạn:Lộc Phú Đa – Việt Trì – Phú Thọ Page 35 Jun . 17 Hướng dẫn:Đường thẳng (AC) qua A(4;3) và vuông góc với (BH) suy ra (AC) : 4 3 3 x t y t      (AC) cắt trung tuyến (CM) tại C :   4 3 3 2 6 0 3 5;6 1 0 x t y t t t C x y                  – B thuộc (BH) suy ra B(t;3t+11 ). Do (CM) là trung tuyến cho nên M là trung điểm của AB , đồng thời M thuộc (CM) . 4 3 14 ; 2 2 t t M           4 3 14 1 0 4 2 2 t t M CM t           . Do đó tọa độ của B(-4;-1) và M(0;1 ). Bài 83.Trong mpOxy, cho elip (E): 2 2 1 8 4 x y   và đường thẳng d: x  2 y + 2 = 0. Đường thẳng d cắt elip (E) tại 2 điểm B, C. Tìm điểm A trên elip (E) sao cho ABC có diện tích lớn nhất. Hướng dẫn:-Do đường thẳng d cố định cho nên B,C cố định , có nghĩa là cạnh đáy BC của tam giác ABC cố định . – Diện tích tam giác lớn nhất khi khoảng cách từ A ( trên E) là lớn nhất – Phương trình tham số của (E) :  2 2 sin 2 2 sin ;2cos 2cos x t A t t y t      – Ta có :   2 2 sin 2 2 ost+2 , 3 t c h A d      4sin2 2 sin ost 4 4 3 3 3 xt c          . Dấu đẳng thức chỉ xảy ra khi sin 1 4 x        . sin 1 2 2 2, 2 4 4 2 4 3 2 2 2, 2sin 1 4 2 44 x x k x k x y x k x k x yx                                                         Nhận xét : Thay tọa độ 2 điểm A tìm được ta thấy điểm  2; 2A  thỏa mãn . B H C M A(4;3) 3x-y+11=0 x+y-1=0 2 2-2 2 2 y x O -2 2 x- 2 y+2=0 B CA -2 2 A

Bạn đang đọc nội dung bài viết 21 Dạng Bài Tập Viết Phương Trình Mặt Phẳng Trong Đề Thi Đại Học Có Lời Giải trên website Asianhubjobs.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!