Cập nhật nội dung chi tiết về Cách Giải Bài Toán Bằng Cách Lập Phương Trình Và Hệ Phương Trình mới nhất trên website Asianhubjobs.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất.
I. Các bước giải bài toán bằng cách lập phương trình, hệ phương trình
Bước 1: Lập phương trình (hệ phương trình)
Chọn ẩn và tìm điều kiện của ẩn (thông thường ẩn là đại lượng bài toán yêu cầu tìm).
Biểu thị các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
Lập phương trình (hệ phương trình) biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải phương trình (hệ phương trình), kiểm tra xem kết quả có thỏa mãn điều kiện hay không.
Bước 3: Kết luận
II. Một số dạng toán về lập phương trình điển hình và cách giải cụ thể
Dạng 1: Chuyển động
(Trên đường bộ, trên dòng sông có tính đến dòng nước chảy)
Ví dụ 1: Một người đi ô tô từ A đến B để giải quyết công việc lúc 8h. Đoạn đường AB dài 80km gồm một đoạn đường bằng và một đoạn dốc. Vận tốc người đó đi trên đường bằng là 80 km/h, khi lên dốc (lúc đi) là 48 km/h, khi xuống dốc (lúc về) là 90 km/h. Tính độ dài đoạn đường bằng, biết rằng tới B, người đó giải quyết công việc trong 1h30 phút rồi quay về luôn và về tới A lúc 12h.
Lời giải:
Gọi độ dài đoạn đường bằng là x (0 < x < 90) (km)
Tổng thời gian người đó đi là: 12 – 8 – 1,5 = 2,5 (h)
Thời gian người đó đi trên quãng đường bằng là: 2x/80 (h)
Thời gian người đó lên dốc là: (90-x)/48 (h)
Thời gian người đó xuống dốc là: (90-x)/90 (h)
Theo bài ra, ta có:
2x/80 + (90-x)/48 + (90-x)/90 = 2.5
⇒ (18x + 15(90-x) +8(90-x) )/720 = 2.5
⇒ 18x – 15x – 8x = 1800 – 720 – 1350
⇒ -5x = -270
⇒ x = 54 (thỏa mãn)
Kết luận: Quãng đường bằng dài 54 km.
Ví dụ 2: Một ca nô xuôi dòng theo A đến B rồi quay trở lại. Biết tổng thời gian ca nô xuôi ngược trên AB dài 40 km hết 4,5 giờ. Tính vận tốc của dòng nước, biết thời gian đi 5 km lúc đi bằng thời gian đi 4 km lúc về.
Lời giải:
Gọi vận tốc của thuyền khi nước lặng là x và vận tốc của dòng nước là y
Lại có tổng thời gian ca nô xuôi ngược trên AB dài 40 km hết 4h 30 phút
Theo bài ra, ta có hệ phương trình:
5/(x+ y) = 4/(x -y) (I) và 40/(x+ y) + 40/(x -y) = 4,5 (II)
Từ (I) suy ra: y = x – 16
Thay y = x – 16 vào (2), ta được:
Kết luận: Vận tốc dòng nước là 2 km/h.
Dạng 2: Toán làm chung – làm riêng
( Toán vòi nước, công việc )
Ví dụ 3: Cho 2 vòi nước khác nhau A và B cũng chảy vào bể. Vòi A cần ít hơn 2 giờ so với vòi B để một mình chảy đầy bể. Tính thời gian cần thiết để mỗi vòi chảy một mình đầy bể, biết tích thời gian 2 vòi chảy một mình gấp 4 lần thời gian 2 vòi cùng chảy.
Lời giải:
⇒ Thời gian để vòi B một mình chảy đầy bể là x + 2 (giờ)
Trong một giờ vòi A chảy được: 1/x (bể)
Trong một giờ vòi A chảy được: 1/(x+2) (bể)
Trong một giờ cả hai vòi chảy được: 1/x + 1/(x+2) = (2x+2)/(x (x+2) ) (bể)
Suy ra, thời gian để hai vòi chảy đầy bể là:
1 : ( (2x+2)/(x.(x+2) ) = (x (x+2))/(2 (x+1))
Theo bài ra, ta có phương trình:
x.(x + 2) = 4.(x.(x+2))/(2.(x+1))
⇒ 2x.(x +1).(x + 2) = 4x.(x + 2)
⇒ x + 1 = 2 (chia cả 2 vế cho 2x (x + 2) # 0)
⇒ x = 1 (thỏa mãn)
Vậy vòi A cần 1 giờ để chảy đầy bể, vòi B cần 3 giờ để chảy đầy bể.
Ví dụ 4: Hai tổ cùng làm chung một công việc thì hết 12h. Tính số giờ mỗi tổ làm một mình xong công việc, biết nếu mỗi tổ lần lượt làm một nửa công việc thì hết 25h.
Lời giải:
Gọi số giờ tổ 1 một mình làm xong công việc là x
số giờ tổ 2 một mình làm xong công việc là y
Trong 1 giờ, cả hai tổ làm được 1/x + 1/y = 1/12 (công việc)
Khi mỗi người làm một nửa công việc, ta có: x/2 + y/2 = 25
Theo bài ra, ta có hệ phương trình:
1/x + 1/y = 1/12 (I) và x/2 + y/2 = 25 (II)
Từ (II) ⇒ x = 50-y
Thay x = 50 – y vào (I), ta được:
1/(50-y) + 1/y = 1/12 ⇒ y = 20 hoặc y = 30 ⇒ x = 30 hoặc x = 20
Kết luận: Tổ 1 làm một mình hết 20 giờ, tổ 2 làm một mình hết 30 giờ (hoặc ngược lại)
Ví dụ 5: Một mảnh vườn hình chữ nhật có chiều rộng bằng 2/3 chiều dài. Người chủ của mảnh vườn cắt mỗi cạnh đi 5m để trồng hoa, nên diện tích của mảnh vườn đã giảm 16%. Tính diện tích của mảnh vườn ban đầu.
Lời giải:
Suy ra chiều rộng của mảnh vườn là 2/3 x (m)
Chiều dài của mảnh vườn sau khi giảm 5m là x – 5 (m)
Chiều rộng của mảnh vườn sau khi giảm 5m là 2/3 x – 5 (m)
Diện tích của mảnh vườn sau khi cắt bớt là:
(x – 5) (2/3 x – 5) = 2/3 x2 – 5x – 10/3 x + 25 = (2×2-25x+75)/3
Phần diện tích giảm đi 16% là:
(2×2)/3 – 16% (2×2)/3 = (2×2)/3 – (8×2)/75 = (50×2 – 8×2)/75 = (14×2)/25
Theo bài ra, ta có phương trình:
(2×2-25x+75)/3 = (14×2)/25
⇒ 50×2 – 625x +1875 = 42×2
⇒ 8×2 – 625x +1875 = 0
⇒ x = 75 hoặc x = 25/8 (loại vì 25/8<5 )
Suy ra chiều rộng của mảnh vườn là 50m
Kết luận: Diện tích của mảnh vườn ban đầu là: 75 x 50 = 3750 (m2)
Ví dụ 6: Trong tháng năm hai nhóm công nhân đã trồng được 720 cây bạch đàn. Tháng tiếp theo do năng suất tăng nên hai nhóm trồng được thêm 99 cây bạch đàn so với tháng năm. Tính số cây mỗi nhóm đã trồng được trong tháng năm, biết tháng sáu nhóm một năng suất tăng 15%, nhóm hai tăng 12%.
Lời giải:
Gọi số cây nhóm một trồng được trong tháng năm là x
số cây nhóm hai trồng được trong tháng năm là y
Suy ra số cây nhóm một trồng được trong tháng sáu là 15% x = 115x/100 (cây)
số cây nhóm hai trồng được trong tháng sáu là 12% y = 112y/100 (cây)
Theo bài ra, ta có hệ phương trình:
x + y = 720 và 115x/100+ 112y/100 = 720 + 99
Giải hệ ta được: x = 420 và y = 300
Kết luận: Nhóm một đã trồng được 420 cây trong tháng năm, nhóm hai đã trồng được 300 cây trong tháng năm.
Dạng 4: Toán có nội dung hình học
Ví dụ 7: Một tấm bìa các tông hình chữ nhật có chiều dài hơn chiều rộng 17 cm và đường chéo bằng 53 cm. Tính chu vi của tấm bìa các tông đó.
Lời giải:
Suy ra chiều rộng của tấm bìa là x – 17 (cm)
Áp dụng định lý Py – ta – go, ta có phương trình:
x2 + (x – 17)2 = 532
⇒ x2+ x2 – 34x + 289 – 2809 = 0
⇒ 2×2 – 34 x – 2520 = 0
⇒ x = 45 hoặc x = -28 (loại)
Suy ra chiều rộng của tấm bìa là 28 (cm), Chu vi của tấm bìa các tông là 146 (cm)
Ví dụ 8: Một thửa ruộng có chu vi 450m. Tính diện tích ban đầu của thửa ruộng đó, biết rằng chu vi của thửa ruộng không thay đổi khi giảm chiều dài đi 1/5 và tăng chiều rộng lên 1/4.
Lời giải:
Gọi chiều dài của thửa ruộng là x, chiều rộng của thửa ruộng là y
Suy ra chiều dài sau khi cắt bớt là 1-1/5 x = 4/5 x (m)
Chiều rộng sau khi tăng thêm là 1+ 1/4 x = 5/4 y (m)
Nưa chu vi thửa ruộng đó là: 450 : 2 = 225 (m)
Theo bài ra, ta có hệ phương trình:
x + y = 225 và 4/5 x+ 5/4 y = 225
Giải ra ta được: x=125 và y = 100 (thỏa mãn)
Diện tích ban đầu của thửa ruộng đó là 125 x 100 = 12500 (m2)
Dạng 5: Toán về tìm số
Ví dụ 9: Bà Dương hơn Dương 56 tuổi. Tính số tuổi của hai bà cháu biết rằng cách đây 5 năm, số tuổi của bà gấp 8 lần tuổi của Dương.
Lời giải:
Suy ra số tuổi của bà Dương hiện tại là x + 56 (tuổi)
Số tuổi của Dương cách đây 5 năm là x – 5 (tuổi)
Số tuổi của bà Dương cách đây 5 năm là x + 56 – 5 = x + 51 (tuổi)
Theo bài ra, ta có phương trình:
8 (x – 5) = x + 51
⇒ 8x – 40 = x + 51
⇒ 8x – x = 40 + 51
⇒ 7x = 91
⇒ x = 13
Vậy số tuổi của Dương là 13, số tuổi của bà là 69.
Ví dụ 10: Tuổi thọ trung bình của 45 vị vua và hoàng hậu ngày xưa là 40. Tuổi trung bình của vua là 35, tuổi trung bình của hoàng hậu là 50. Hỏi có bao nhiêu vị vua, bao nhiêu hoàng hậu được nhắc tới?
Lời giải:
Gọi số vị vua là x, số hoàng hậu là y (0 < x, y < 45)
Theo bài ra, ta có hệ phương trình:
x + y = 45 và (35x + 45y)/45 = 40
Giải ra ta được: x = 15 và y = 30 (thỏa mãn)
Vậy có 15 vị vua, 30 hoàng hậu.
Lời kết: Chúng ta có thể thấy những bài toán trên nếu giải theo phương pháp thông thường sẽ mất rất nhiều thời gian, nhưng khi ta lập được phương trình và hệ phương trình sẽ trở nên đơn giản hơn. Vì vậy, Gia Sư Việt mong rằng các em nắm chắc từng bước giải bài toán bằng cách lập phương trình & hệ phương trình để áp dụng làm bài thi hiệu quả nhất.
♦ Phương pháp giải bài toán về Đường tròn môn Hình học lớp 9
♦ Khái niệm, tính chất và cách chứng minh Tứ giác là Hình vuông
♦ Khái niệm, tính chất & cách chứng minh Tứ giác là Hình chữ nhật
6 Kỹ Năng Giải Bài Toán Bằng Cách Lập Phương Trình, Hệ Phương Trình
Trong khi giải bài toán bằng cách lập phương trình, hệ phương trình các em thường gặp những vướng mắc, lỗi nhỏ hoặc lớn. Vì vậy phải có biện pháp khắc phục.
1. Lời giải không phạm sai lầm và không có sai sót nhỏ
Để học sinh không mắc sai lầm này người giáo viên phải làm cho học sinh hiểu đề toán và trong quá trình giải không có sai sót về kiến thức, kỹ năng tính. Giáo viên phải rèn cho học sinh có thói quen đặt điều kiện cho ẩn và đối chiếu với điều kiện của ẩn xem có thích hợp không?
Ví dụ: Mẫu số của một phân số lớn hơn tử số của nó là 3 đơn vị. Nếu tăng cả tử và mẫu của nó thêm 2 đơn vị thì được phân số mới bằng . Tìm phân số ban đầu. (Đại số 8)
Giải
Gọi tử số của phân số ban đầu là x (điều kiện: x ∈ Z; x ≠ -3).
Thì mẫu số của phân số ban đầu là x + 3.
Theo đề bài ra ta có phương trình: $ displaystyle frac{x+2}{x+5}=frac{1}{2}$ (*) ĐKXĐ: x + 5 ≠ 0 ⇔ x ≠ -5 .
(*) $ displaystyle Leftrightarrow frac{2(x+2)}{2(x+5)}=frac{1(x+5)}{2(x+5)}$
$ displaystyle Rightarrow 2x+4=x+5$
$ displaystyle Leftrightarrow 2x-x=5-4$
⇔ x = 1 (nhận).
Suy ra: tử số của phân số ban đầu là 1, mẫu số phân số ban đầu là 1 + 3 = 4.
Vậy phân số ban đầu là $ displaystyle frac{1}{4}$ .
2. Lời giải toán phải có căn cứ chính xác
Xác định ẩn phụ phải khéo léo, mối quan hệ giữa ẩn và dữ kiện đã cho làm nổi bật được ý phải tìm. Nhờ mối quan hệ giữa các đại lượng trong bài toán thiết lập phương trình – hệ phương trình, từ đó tìm được giá trị của ẩn số. Muốn vậy, người giáo viên phải làm cho học sinh hiểu được đâu là ẩn? Đâu là điều kiện? Có thoả mãn điều kiện hay không? Từ đó có thể xây dựng được cách giải.
Một khu đất hình chữ nhật với hai kích thước hơn kém nhau 4m, biết diện tích của khu đất đó bằng 1200 (m 2). Hãy tính chu vi của khu đất đó? (Đại số 9).
Bài toán hỏi chu vi hình chữ nhật. Học sinh thường có ý nghĩ, bài toán hỏi gì thì gọi đó là ẩn. Nếu ở bài toán này gọi chu vi hình chữ nhật là ẩn thì bài toán khó có lời giải. Giáo viên cần hướng dẫn cho học sinh phát triển sâu trong khả năng suy diễn. Muốn tính chu vi hình chữ nhật ta cần biết chiều dài và chiều rộng của hình chữ nhật.
Thì chiều dài khu đất hình chữ nhật là x + 4 (m).
Vì diện tích hình chữ nhật là 1200m 2. Ta có phương trình sau:
x(x + 4) = 1200
⇔ x 2 + 4x – 1200 = 0
Chiều rộng hình chữ nhật là 30 (m).
Chiều dài hình chữ nhật là 30 + 4 = 34 (m).
Vậy chu vi của khu đất hình chữ nhật là: (34 + 30)2 = 128 (m).
3. Lời giải phải đầy đủ và mang tính toàn diện
Giáo viên phải hướng dẫn học sinh không được bỏ sót khả năng, chi tiết nào, rèn luyện cho học sinh cách kiểm tra lại lời giải xem đầy đủ chưa.
Một tam giác có chiều cao bằng $ displaystyle frac{3}{4}$ cạnh đáy. Nếu chiều cao tăng thêm 3dm, cạnh đáy giảm đi 2dm, thì diện tích tăng thêm 12dm 2. Tính chiều cao và cạnh đáy? (Đại số 8).
GIẢI
Giáo viên lưu ý cho học sinh công thức tính diện tích tam giác theo chiều cao: $ displaystyle S=frac{1}{2}$ cạnh đáy x chiều cao.
Thì chiều cao là $ displaystyle frac{3}{4}x$ (dm).
Diện tích lúc đầu là : $ displaystyle frac{1}{2}cdot xcdot frac{3}{4}x$ (dm 2).
Diện tích lúc sau là: $ displaystyle frac{1}{2}left( x-2 right)left( frac{3}{4}x+3 right)$ (dm 2).
Theo đề bài ta có phương trình sau: $ displaystyle frac{1}{2}left( x-2 right)left( frac{3}{4}x+3 right)-frac{1}{2}xcdot frac{3}{4}x=12$
⇔ $ displaystyle frac{3}{4}x=15$
⇔ 3x = 60
⇔ x = 20 (TMĐK)
Vậy cạnh đáy có độ dài là 20 (dm).
Chiều cao có độ dài là $ displaystyle frac{3}{4}cdot 20=15$ (dm).
4. Lời giải bài toán phải đơn giản
Vừa gà vừa chó
Bó lại cho tròn
Ba mươi sáu con
Một trăm chân chẵn
Hỏi có mấy gà, mấy chó? (Đại số 8)
GIẢI
Gọi số gà là x (con), (điều kiện: x nguyên dương).
Số chó là 36 – x (con).
Số chân gà là 2x (chân).
Số chân chó là 4(36 – x) (chân).
Theo đề bài ta có phương trình: 2x + 4(36 – x) = 100 x = 22 (TMĐK).
Vậy số gà là 22 (con), số chó là 36 – 22 = 14 (con).
Với cách giải trên, bài toán ngắn gọn, dễ hiểu, phù hợp với trình độ của học sinh.
5. Lời giải phải trình bày khoa học
Ví dụ: Chiều cao của một tam giác vuông bằng 9,6m và chia cạnh huyền thành 2 đoạn hơn kém nhau 5,6m. Tính độ dài cạnh huyền của tam giác. (Đại số 9)
Trước khi giải cần kiểm tra kiến thức của học sinh để củng cố công thức. Cho ΔABC vuông tại A có AH ⊥ BC (H ∈ BC), ta có: AH 2 = BH.CH.
Độ dài cạnh CH là: x + 5,6 (m).
Theo đề bài ta có phương trình: x(x + 5,6) = 9,6 2 ⇔ x = 7,2 (TMĐK).
Vậy độ dài cạnh huyền là: 7,2 + 5,6 + 7,2 = 20 (m).
f/ Biện pháp 6: Lời giải phải rõ ràng, đầy đủ, có thể nên thử lại.
Giáo viên cần rèn cho học sinh có thói quen sau khi giải xong cần thử lại kết quả và tìm hiểu hết các nghiệm của bài toán, nhất là đối với phương trình bậc hai, hệ phương trình.
Ví dụ: Một tàu thuỷ chạy trên khúc sông dài 80km, thời gian đi và về mất 8 giờ 20 phút. Tính vận tốc tàu thuỷ khi nước yên lặng. Biết vận tốc dòng nước là 4km/h.
Vận tốc tàu thuỷ khi xuôi dòng là x + 4 (km/h).
Vận tốc của tàu thuỷ khi ngược dòng là x – 4 (km/h).
Theo bài ra ta có phương trình sau:
$ displaystyle frac{80}{x+4}+frac{80}{x-4}=frac{25}{3}$ (*) (vì $ displaystyle {{8}^{h}}{{20}^{‘}}=frac{25}{3}h$)
ĐKXĐ: x ≠ ± 4
(*) ⇔ $ displaystyle frac{80.3(x-4)}{3(x+4)(x-4)}+frac{80.3(x+4)}{3(x+4)(x-4)}=frac{25(x+4)(x-4)}{3(x+4)(x-4)}$
⇒ $ displaystyle 240x-960+240x+960=25{{x}^{2}}-400$
⇔ 5x 2 – 96x – 80 = 0
x 1= $ displaystyle -frac{8}{10}$ (không thoả mãn)
Vậy vận tốc tàu thuỷ khi nước yên lặng là 20 km/h.
Chuyên Đề : Giải Bài Toán Bằng Cách Lập Hệ Phương Trình
HƯỚNG DẪN HỌC SINH PHÂN TÍCH ĐỀ BÀI VÀ GIẢI BÀI TOÁN BẰNG CÁCH LẬP HỆ PHƯƠNG TRÌNH – DẠNG: “LÀM CHUNG – LÀM RIÊNG”.Phần I: LÝ DO CHỌN ĐỀ TÀII/ LÝ DO KHÁCH QUAN.– Trong xu hướng phát triển chung, xã hội luôn đặt ra những yêu cầu mới cho sự nghiệp đào tạo con người. Chính vì vậy, việc dạy và học cũng không ngừng đổi mới để đáp ứng yêu cầu ngày càng cao của xã hội. Trước tình hình đó, mỗi giáo viên cũng phải luôn tìm tòi, sáng tạo, tìm ra phương pháp dạy mới phù hợp với đối tượng học sinh để phát huy cao nhất tính chủ động, sáng tạo, tích cực của người học, nâng cao năng lực phân tích, tìm tòi, phát hiện và giải quyết vấn đề, rèn luyện và hoàn thành các kỹ năng vận dụng thành thạo các kiến thức một cách chủ động, sáng tạo trong thực tế cuộc sống.– Đối với lứa tuổi học sinh THCS nói chung và đối tượng nghiên cứu là học sinh lớp 9 nói riêng. Mặc dù tuổi các em không phải còn nhỏ nhưng khả năng phân tích, suy luận còn rất nhiều hạn chế nhất là đối với đối tượng học sinh học yếu và lười học. Chính vì vậy nên trong những dạng toán của môn đại số lớp 9 thì dạng toán giải bài toán bằng cách lập hệ phương trình đối với các em là dạng khó.II/ LÝ DO CHỦ QUAN.– Qua nhiều năm được phân công dạy bộ môn Toán 9 ở trường THCS Lê Văn Tám và qua nhiều lần kiểm tra, bản thân tôi nhận thấy khả năng tiếp thu và vận dụng kiến thức của học sinh ở phần “giải bài toán bằng cách lập hệ phương trình” là còn rất nhiều hạn chế. Nguyên nhân là do các bài toán dạng này đều xuất phát từ thực tế cuộc sống nếu học sinh không biết tìm hiểu, phân tích bài toán một cách rõ ràng, chính xác thì việc xác định được cách giải là rất khó. – Trong chương trình toán 9 thì “giải bài toán bằng cách lập hệ phương trình” chiếm một vị trí rất quan trọng. Đây cũng là một dạng toán vận dụng kiến thức vào thực tế cuộc sống mà nếu các em nắm được thì sẽ tạo hứng thú học tập và yêu thích bộ môn hơn. Khi giải bài toán bằng cách lập hệ phương trình nói chung và dạng toán “Làm chung – Làm riêng” nói riêng thì việc phân tích đề bài là rất quan trọng nhưng trong thực tế khi làm bài tập của học sinh hoặc khi chữa bài tập của giáo viên thì đều chưa chú trọng đến bước phân tích đề bài, nên học sinh không biết cách lập được hệ phương trình, dẫn đến học sinh thấy khó và thấy chán học dạng toán này. Bước khó nhất của học sinh khi giải dạng toán là không biết cách phân tích, lập luận để lập được hệ phương trình.– Để giúp học sinh có thể nắm vững cách “phân tích và giải bài toán bằng cách lập hệ phương trình” – dạng toán: “Làm chung – Làm riêng” và cũng để rèn luyện nâng cao trình độ chuyên môn của bản thân nên tôi muốn được trao đổi một vài kinh nghiệm trong công việc giải dạng toán này cùng quý thầy cô. Đó chính là lý do tôi chọn đề tài này.
ĐỐI TƯỢNG, CƠ SỞ VÀ PHƯƠNG PHÁP NGHIÊN CỨU
1/ Đối tượng nghiên cứu:Học sinh lớp 9 trường THCS Lê Văn Tám trong 3 năm học liên tiếp: 2003-2004; 2004-2005; 2005-2006 và đã áp dụng trong ba năm học liên tiếp sau đó: 2006-2007; 2007-2008; 2008-2009. 2/ Cơ sở nghiên cứu:Căn cứ vào chất lượng của học sinh và dựa trên việc dạy và học giải bài toán bằng cách lập hệ phương trình dạng ” Làm chung – Làm riêng” thực tế ở trường THCS Lê Văn Tám qua nhiều năm.3/ Phương pháp nghiên cứu:*) Trong đề tài tôi sử dụng các phương pháp sau:– Nghiên cứu tài liệu: ” Một số vấn đề về đổi mới phương pháp dạy học môn Toán trong trường THCS”.– Qua các lần tập huấn thay sách.– Phương pháp hỏi đáp trực tiếp đối với học sinh, đối với giáo viên trong cùng bộ môn trong trường và trong huyện.– Phương pháp luyện tập, thực hành và qua các bài kiểm tra.– Phương pháp tổng kết rút kinh nghiệm.
Bài Giải Bài Toán Bằng Cách Lập Phương Trình
Bài 8 Giải Bài Toán Bằng Cách Lập Phương Trình 9, Bài Giải Bài Toán Bằng Cách Lập Phương Trình, Bài Giải Bài Toán Bằng Cách Lập Phương Trình Lớp 8, Bài 7 Giải Toán Bằng Cách Lập Phương Trình, Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Bài 5 Giải Toán Bằng Cách Lập Hệ Phương Trình, Bài 6+7 Giải Bài Toán Bằng Cách Lập Phương Trình, Bài 6 Giải Toán Bằng Cách Lập Phương Trình, Bài 6 Giải Toán Bằng Cách Lập Hệ Phương Trình, Bài 5 Giải Bài Toán Bằng Cách Lập Phương Trình, Bài Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Bài 6 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Đề Bài Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Đề Bài Giải Bài Toán Bằng Cách Lập Phương Trình, Đề Bài Giải Bài Toán Bằng Cách Lập Phương Trình Lớp 8, Bài Giải Toán Bằng Cách Lập Phương Trình, ôn Tập Giải Bài Toán Bằng Cách Lập Phương Trình, ôn Tập Giải Bài Toán Bằng Cách Lập Phương Trình Lớp 8, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Bài 7 Giải Toán Bằng Cách Lập Phương Trình Tiếp, Bài Giảng Giải Bài Toán Bằng Cách Lập Phương Trình, Bài 6 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Chuyên Đề Giải Bài Toán Bằng Cách Lập Phương Trình Lớp 8, Chuyên Đề Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Giải Bài Tập Bằng Cách Lập Hệ Phương Trình, Giải Bài Tập Bằng Cách Lập Phương Trình, Bài 4 Giải Hệ Phương Trình Bằng Phương Pháp Cộng, Bài Giải Hệ Phương Trình Bằng Phương Pháp Cộng Đại Số, Bài 3 Giải Hệ Phương Trình Bằng Phương Pháp Thế Violet, Bài Giải Hệ Phương Trình Bằng Phương Pháp Thế, Bài 3 Giải Hệ Phương Trình Bằng Phương Pháp Thế, Phương Trình 1 ẩn Và Cách Giải, Phương Trình Bậc Hai Một ẩn Và Cách Giải, Giải Bài Tập Bằng Phương Pháp Bảo Toàn Electron, Phương Trình Hóa Học Nào Sau Đây Thể Hiện Cách Điều Chế Cu Theo Phương Pháp Th, Vì Sao Lại Nghiên Cứu Hấp Phụ Axetic Bằng Than Hoạt Tính Bằng Phương Trình Frendlich, Phương án Giải Phóng Mặt Bằng, Giải Bài Tập Este Bằng Phương Pháp Quy Đổi, Thuc Trang Va Giai Phap Ve Cai Cach Hanh Chinh Tai Dia Phuong, Các Dạng Toán Và Phương Pháp Giải Toán 6, Phương Pháp Giải Toán Qua Các Bài Toán Olympic, Các Dạng Toán Và Phương Pháp Giải Toán 8 Tập 1, Các Dạng Toán Và Phương Pháp Giải Toán 8, Quy Cách Cọc Giải Phóng Mặt Bằng, Cách Đối Tượng Địa Lý Trên Bản Đồ Không Được Biểu Hiện Bằng Phương Pháp Nào, Cơ Sở Lý Luận Về Bằng Chứng Kiểm Toán Và Các Phương Pháp Thu Thập Bằng Chứng Kiểm Toán, Thuc Trang Va Giai Phap Cong Tac Cai Cach Hanh Chinh Tai Dia Phuong Cap Huyen, Cách Viết Phương Trình Hóa Học, Cách Viết Phương Trình Mặt Phẳng, Phương Pháp Giải Bài Toán Hỗn Hợp, Phương Pháp Giải Toán 8, Cách Viết Phương Trình Tiếp Tuyến, Cách Viết Phương Trình Đường Thẳng, Cách Giải Bài Toán Khó, Cách Giải Bài Toán Lớp 2, Cách Giải Bài Toán Lớp 3, Cách Giải Bài Toán Lớp 4, Cách Giải Bài Toán X, Cách Giải Bài Toán Hàm Hợp, Cách Giải Bài Toán, Cách Giải Bài Toán Lãi Kép, Các Phương Pháp Giải Toán Qua Các Kì Thi Olympic, Phương Pháp Giải Các Bài Toán Trong Tin Học, Cách Giải Bài Toán Quỹ Tích, Cách Giải Bài Toán Về Ankan, Cách Giải Bài Toán Hiệu Tỉ, Cách Giải Bài Toán Ma Trận, Cách Giải Bài Toán Giới Hạn, Giải Bài Tập Phương Trình Bậc Hai Một ẩn, Bài Giải Phương Trình Bậc 2, C Giải Phương Trình Bậc 2, Hệ Phương Trình ôn Thi Đại Học Có Lời Giải, Giải Phương Trình 9x-7i 3(3x-7u), Bài Giải Phương Trình, Giải Phương Trình 8(x+1/x)^2+4(x^2+1/x^2)^2-4(x^2+1/x^2)(x+1/x)^2=(x+4)^2, Bài Tập Giải Phương Trình Lớp 8, Đề Bài Giải Phương Trình Bậc 2, Giải Bài Tập Phương Trình Mặt Cầu, Giải Phương Trình 7-(2x+4)=-(x+4), Giải Phương Trình 7-3x=9-x, Giải Phương Trình 6 ẩn, Giải Phương Trình 8, Giải Phương Trình 7+2x=22-3x, Giải Phương Trình (8x-4x^2-1)(x^2+2x+1)=4(x^2+x+1), Giải Phương Trình 7x-3/x-1=2/3, Giải Phương Trình 8.3^x+3.2^x=24.6^x, Giải Phương Trình 7x+21=0, Giải Hệ Phương Trình ôn Thi Vào 10, Giải Bài Tập Bất Phương Trình Và Hệ Bất Phương Trình Một ẩn, Phương Pháp Giải Bài Toán Nhiệt Nhôm, Cách Giải Bài Toán Tổng Hiệu, Cách Giải Bài Toán Trên Google,
Bài 8 Giải Bài Toán Bằng Cách Lập Phương Trình 9, Bài Giải Bài Toán Bằng Cách Lập Phương Trình, Bài Giải Bài Toán Bằng Cách Lập Phương Trình Lớp 8, Bài 7 Giải Toán Bằng Cách Lập Phương Trình, Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Bài 5 Giải Toán Bằng Cách Lập Hệ Phương Trình, Bài 6+7 Giải Bài Toán Bằng Cách Lập Phương Trình, Bài 6 Giải Toán Bằng Cách Lập Phương Trình, Bài 6 Giải Toán Bằng Cách Lập Hệ Phương Trình, Bài 5 Giải Bài Toán Bằng Cách Lập Phương Trình, Bài Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Bài 6 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Đề Bài Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Đề Bài Giải Bài Toán Bằng Cách Lập Phương Trình, Đề Bài Giải Bài Toán Bằng Cách Lập Phương Trình Lớp 8, Bài Giải Toán Bằng Cách Lập Phương Trình, ôn Tập Giải Bài Toán Bằng Cách Lập Phương Trình, ôn Tập Giải Bài Toán Bằng Cách Lập Phương Trình Lớp 8, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Bài 7 Giải Toán Bằng Cách Lập Phương Trình Tiếp, Bài Giảng Giải Bài Toán Bằng Cách Lập Phương Trình, Bài 6 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Chuyên Đề Giải Bài Toán Bằng Cách Lập Phương Trình Lớp 8, Chuyên Đề Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Giải Bài Tập Bằng Cách Lập Hệ Phương Trình, Giải Bài Tập Bằng Cách Lập Phương Trình, Bài 4 Giải Hệ Phương Trình Bằng Phương Pháp Cộng, Bài Giải Hệ Phương Trình Bằng Phương Pháp Cộng Đại Số, Bài 3 Giải Hệ Phương Trình Bằng Phương Pháp Thế Violet, Bài Giải Hệ Phương Trình Bằng Phương Pháp Thế, Bài 3 Giải Hệ Phương Trình Bằng Phương Pháp Thế, Phương Trình 1 ẩn Và Cách Giải, Phương Trình Bậc Hai Một ẩn Và Cách Giải, Giải Bài Tập Bằng Phương Pháp Bảo Toàn Electron, Phương Trình Hóa Học Nào Sau Đây Thể Hiện Cách Điều Chế Cu Theo Phương Pháp Th, Vì Sao Lại Nghiên Cứu Hấp Phụ Axetic Bằng Than Hoạt Tính Bằng Phương Trình Frendlich, Phương án Giải Phóng Mặt Bằng, Giải Bài Tập Este Bằng Phương Pháp Quy Đổi, Thuc Trang Va Giai Phap Ve Cai Cach Hanh Chinh Tai Dia Phuong, Các Dạng Toán Và Phương Pháp Giải Toán 6, Phương Pháp Giải Toán Qua Các Bài Toán Olympic, Các Dạng Toán Và Phương Pháp Giải Toán 8 Tập 1,
Bạn đang đọc nội dung bài viết Cách Giải Bài Toán Bằng Cách Lập Phương Trình Và Hệ Phương Trình trên website Asianhubjobs.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!