Đề Xuất 6/2023 # Chuyên Đề Hệ Phương Trình Bậc Nhất Hai Ẩn Số # Top 7 Like | Asianhubjobs.com

Đề Xuất 6/2023 # Chuyên Đề Hệ Phương Trình Bậc Nhất Hai Ẩn Số # Top 7 Like

Cập nhật nội dung chi tiết về Chuyên Đề Hệ Phương Trình Bậc Nhất Hai Ẩn Số mới nhất trên website Asianhubjobs.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất.

VẤN ĐỀ 3: HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN SỐ A. MỤC TIÊU: Học sinh nắm được - Khái niệm hệ phương trình bậc nhất hai ẩn: và Cách giải - Một số dạng toán về hệ phương trình bậc nhất hai ẩn B. NỘI DUNG: I: CÁCH GIẢI HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN Dạng 1: Giải hệ phương trình có bản và đưa về dạng cơ bản 1.- Vận dụng quy tắc thế và quy tắc cộng đại số để giải các hệ phương trình sau: Giải hệ phương trình bằng phương pháp thế Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y) = (2;1) Giải hệ phương trình bằng phương pháp cộng đại số Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y) = (2;1) 2.- Bài tập: Bài 1: Giải các hệ phương trình 1) 2) 3) 4) 5) 6) 7) Bài 2: Giải các hệ phương trình sau: 1) 2) 3) 4) 5) 6) Dạng 2. Giải các hệ phương trình sau bằng cách đặt ẩn số phụ Bài tập: 1) 2) 3) 4) 5) 6) 7) 8) Dạng 3. Giải và biện luận hệ phương trình Phương pháp giải: Từ một phương trình của hệ tìm y theo x rồi thế vào phương trình thứ hai để được phương trình bậc nhất đối với x Giả sử phương trình bậc nhất đối với x có dạng: ax = b (1) Biện luận phương trình (1) ta sẽ có sự biện luận của hệ i) Nếu a=0: (1) trở thành 0x = b - Nếu b = 0 thì hệ có vô số nghiệm - Nếu b0 thì hệ vô nghiệm ii) Nếu a 0 thì (1) x = , Thay vào biểu thức của x ta tìm y, lúc đó hệ phương trình có nghiệm duy nhất. Ví dụ: Giải và biện luận hệ phương trình: Từ (1) y = mx – 2m, thay vào (2) ta được: 4x – m(mx – 2m) = m + 6 (m2 – 4)x = (2m + 3)(m – 2) (3) i) Nếu m2 – 4 0 hay m2 thì x = Khi đó y = - . Hệ có nghiệm duy nhất: (;-) ii) Nếu m = 2 thì (3) thỏa mãn với mọi x, khi đó y = mx -2m = 2x – 4 Hệ có vô số nghiệm (x, 2x-4) với mọi x R iii) Nếu m = -2 thì (3) trở thành 0x = 4 . Hệ vô nghiệm Vậy: - Nếu m2 thì hệ có nghiệm duy nhất: (x,y) = (;-) - Nếu m = 2 thì hệ có vô số nghiệm (x, 2x-4) với mọi x R - Nếu m = -2 thì hệ vô nghiệm Bài tập: Giải và biện luận các hệ phương trình sau: 1) 2) 3) 4) 5) 6) DẠNG 4: XÁC ĐỊNH GIÁ TRỊ CỦA THAM SỐ ĐỂ HỆ CÓ NGHIỆM THỎA MÃN ĐIỀU KIỆN CHO TRƯỚC Phương pháp giải: Giải hệ phương trình theo tham số Viết x, y của hệ về dạng: n + với n, k nguyên Tìm m nguyên để f(m) là ước của k Ví dụ1: Định m nguyên để hệ có nghiệm duy nhất là nghiệm nguyên: HD Giải: để hệ có nghiệm duy nhất thì m2 – 4 0 hay m Vậy với m hệ phương trình có nghiệm duy nhất Để x, y là những số nguyên thì m + 2 Ư(3) = Bài Tập: Bài 1: Định m nguyên để hệ có nghiệm duy nhất là nghiệm nguyên: Bài 2: Định m, n để hệ phương trình sau có nghiệm là (2; -1) HD: Thay x = 2 ; y = -1 vào hệ ta được hệ phương trình với ẩn m, n Định a, b biết phương trình ax2 -2bx + 3 = 0 có hai nghiệm là x = 1 và x = -2 HD: thay x = 1 và x = -2 vào phương trình ta được hệ phương trình với ẩn a, b Xác định a, b để đa thức f(x) = 2ax2 + bx – 3 chia hết cho 4x – 1 và x + 3 HD: f(x) = 2ax2 + bx – 3 chia hết cho 4x – 1 và x + 3 nên. Biết nếu f(x) chia hết cho ax + b thì f(-) = 0 Giải hệ phương trình ta được a = 2; b = 11 Cho biểu thức f(x) = ax2 + bx + 4. Xác định các hệ số a và b biết rằng f(2) = 6 , f(-1) = 0 HD: Bài 3: Xác định a, b để đường thẳng y = ax + b đi qua hai điểm A(2 ; 1) ; B(1 ; 2) HD: Đường thẳng y = ax + b đi qua hai điểm A(2 ; 1) ; B(1 ; 2) ta có hệ phương trình Xác định a, b để đường thẳng y = ax + b đi qua hai điểm a) M(1 ; 3) ; N(3 ; 2) b) P(1; 2) ; Q(2; 0) Bài 4: Định m để 3 đường thẳng 3x + 2y = 4; 2x – y = m và x + 2y = 3 đồng quy DH giải: - Tọa độ giao điểm M (x ; y) của hai đường thẳng 3x + 2y = 4 và x + 2y = 3 là nghiệm của hệ phương trình: . Vậy M(0,2 ; 1,25) Để ba đường thẳng trên đồng quy thì điểm M thuộc đường thẳng 2x – y = m, tức là: 2.0,2- 1,25 = m m = -0,85 Vậy khi m = -0,85 thì ba đường thẳng trên đồng quy Định m để 3 đường thẳng sau đồng quy a) 2x – y = m ; x - y = 2m ; mx – (m – 1)y = 2m – 1 b) mx + y = m2 + 1 ; (m +2)x – (3m + 5)y = m – 5 ; (2 – m)x – 2y = -m2 + 2m – 2 Bài 5: Định m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn hệ thức cho trước Cho hệ phương trình: Với giá trị nào của m để hệ có nghiệm (x ; y) thỏa mãn hệ thức: 2x + y + = 3 HD Giải: - Điều kiện để hệ phương trình có nghiệm duy nhất: m 2 - Giải hệ phương trình theo m - Thay x = ; y = vào hệ thức đã cho ta được: 2. + + = 3 3m2 – 26m + 23 = 0 m1 = 1 ; m2 = (cả hai giá trị của m đều thỏa mãn điều kiện) Vậy m = 1 ; m = BÀI TẬP TỔNG HỢP Bài 1: Cho hệ phương trình (m là tham số) Giải hệ phương trình khi m = Giải và biện luận hệ phương trình theo m Với giá trị nào của m thì hệ có nghiệm (x;y) với x, y là các số nguyên dương Bài 2: Cho hệ phương trình : Giải và biện luận hệ phương trình theo m Với giá trị nguyên nào của m để hai đường thẳng của hệ cắt nhau tại một điểm nằm trong góc phần tư thứ IV của hệ tọa độ Oxy Định m để hệ có nghiệm duy nhất (x ; y) sao cho P = x2 + y2 đạt giá trị nhỏ nhất. Bài 3: Cho hệ phương trình Giải hệ phương trình khi m = 5 Tìm m nguyên sao cho hệ có nghiệm (x; y) với x < 1, y < 1 Với giá trị nào của m thì ba đường thẳng 3x + 2y = 4; 2x – y = m; x + 2y = 3 đồng quy Bài 4: Cho hệ phương trình: Giải hệ phương trình khi m = 1 Với giá trị nào của m để hệ có nghiệm (-1 ; 3) Với giá trị nào của m thì hệ có nghiệm duy nhất, vô nghiệm Bài 5: Cho hệ phương trình: Giải hệ phương trình khi m = 3 Với giá trị nào của m để hệ có nghiệm (-1 ; 3) Chứng tỏ rằng hệ phương trình luôn luôn có nghiệm duy nhất với mọi m Với giá trị nào của m để hệ có nghiệm (x ; y) thỏa mãn hệ thức: x - 3y = - 3 Bài 6: Cho hệ phương trình: a) Giải hệ phương trình khi . b) Tìm giá trị của m để hệ phương trình đã cho có nghiệm (x; y) thỏa mãn hệ thức . Bài 7: Cho hệ phương trình Giải hệ phương trình khi m = 5 Chứng tỏ rằng hệ phương trình luôn luôn có nghiệm duy nhất với mọi m Định m để hệ có nghiệm (x ; y) = ( 1,4 ; 6,6) Tìm giá trị nguyên của m để hai đường thẳng của hệ cắt nhau tại một điểm nằm trong góc phần tư thứ IV trên mặt phẳng tọa độ Oxy Với trị nguyên nào của m để hệ có nghiệm (x ; y) thỏa mãn x + y = 7

Hệ Phương Trình Bậc Nhất Hai Ẩn

Published on

Hệ Phương Trình Bậc Nhất Hai Ẩn Xem các bài viết khác tại: https://sites.google.com/site/toanhoctoantap/toan-tap-toan-9/he-phuong-trinh-bac-nhat-hai-an

1. GIA SƯ TÀI ĐỨC VIỆT – 0936 128 126 HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN I/ KIẾN THỨC CẦN NHỚ: (𝐼) { 𝑎𝑥 + 𝑏𝑦 = 𝑐 ( 𝑑) (𝑎2 + 𝑏2 ≠ 0) 𝑎′ 𝑥 + 𝑏′ 𝑦 = 𝑐′( 𝑑′)(𝑎′2 + 𝑏′2 ≠ 0) TH1: Hệ (I) có một nghiệm  (d) cắt (d’)  𝑎 𝑎′ ≠ 𝑏 𝑏′ (a’, b’ # 0) TH2: Hệ (I) vô nghiệm  (d)

2. GIA SƯ TÀI ĐỨC VIỆT – 0936 128 126 b/ Với m = 2 thì hai hệ không tương đương với nhau. Giải Chú ý: Hai hệ phương trình gọi là tương đương nhau nếu tập nghiệm của chúng bằng nhau. a/ Với m = 4. Ta có: (I) { 2𝑥 + 2𝑦 = 4 𝑥 + 𝑦 = 6 ↔ { 𝑥 + 𝑦 = 2 𝑥 + 𝑦 = 6 Và (II) { 𝑥 − 𝑦 = 2 4𝑥 − 4𝑦 = 12 ↔ { 𝑥 − 𝑦 = 2 𝑥 − 𝑦 = 3 Thấy hai hệ này đều vô nghiệm nên suy ra chúng tương đương nhau. b/ Với m = 2. Ta có: (I) Trở thành { 2𝑥 + 2𝑦 = 2 𝑥 + 𝑦 = 6 ↔ { 𝑥 + 𝑦 = 1 𝑥 + 𝑦 = 6 hệ này vô nghiệm (1) (II) trở thành { 𝑥 − 𝑦 = 2 2𝑥 − 4𝑦 = 12 ↔ { 𝑦 = 𝑥 − 2 𝑦 = 1 2 𝑥 − 3 Hai đường thẳng y = x – 2 và y = 1 2 𝑥 − 3 có hệ số góc khác nhau (1 # 1 2 ) nên chúng cắt nhau. Hệ (II) có một nghiệm duy nhất (2) Từ (1) và (2) suy ra hai hệ (I) và (II) không tương đương nhau khi m = 2 Ví Dụ 2: Cho hai hệ phương trình { 2𝑥 − 𝑦 = 4 −𝑥 + 3𝑦 = 3 (I) và { 𝑚𝑥 − 𝑦 = 4 2𝑥 + 𝑛𝑦 = 16 (II) a/ Hãy tìm nghiệm của hệ (I) bằng cách vẽ đồ thị của hai đường thẳng trong hệ. b/ Tìm m và n để hệ (I) và (II) tương đương nhau. Giải a/ Đường thẳng (d): 2x – y = 4 đi qua hai điểm (0; -4) và (2; 0).

3. GIA SƯ TÀI ĐỨC VIỆT – 0936 128 126 Đường thẳng (d’): -x + 3y = 3 đi qua hai điểm (0; 1) và(-3;0) Hai đường thẳng đó cắt nhau tại M(3; 2) Nghiệm của hệ (I) là (3; 2) b/ Để hệ (I) và (II) tương đương với nhau thì hệ (II) bắt buộc phải nhận nghiệm (3; 2) là nghiệm duy nhất. Thay x = 3; y = 2 vào hệ (II) được: { 3𝑚 − 2 = 4 6 + 2𝑛 = 16 ↔ { 𝑚 = 2 𝑛 = 5 Với m = 2 và n = 5 hệ (I) trở thành { 3𝑥 − 𝑦 = 4 2𝑥 + 5𝑦 = 16 dễ dàng kiểm tra hệ này có nghiệm duy nhất. Vậy với m = 2 và n = 5 hệ (I) và (II) tương đương nhau. Ví Dụ 3: Cho hệ phương trình: (I) { 2𝑥 = 4 −3𝑥 + 4𝑦 = −2 a/ Hãy đoán số nghiệm của hệ (I) b/ Tìm tập nghiệm của hệ (I) bằng phương pháp đồ thị.

4. GIA SƯ TÀI ĐỨC VIỆT – 0936 128 126 c/ Vẽ thêm đường thằng x + 2y = 4 trên cùng hệ trục tọa độ. Có nhận xét gì về nghiệm của hệ phương trình (II) { 𝑥 + 2𝑦 = 4 −3𝑥 + 4𝑦 = −2 ? Hãy giải hệ (II) bằng phương pháp thế để kiểm tra. Giải a/ Hệ có nghiệm duy nhất vì đường thằng (d1): 2x = 4 song song với trục tung còn đường thẳng (d2): -3x + 4y = – 2 không song song với trục tọa độ nào nên, (d1) và (d2) cắt nhau. b/ Hai đường thẳng (d1) và (d2) cắt nhau tại điểm M(2; 1) nên hệ (I) có nghiệm duy nhất là (2; 1). c/ Đường thẳng (d3): x + 2y = 4 đi qua M(2; 1) và (4; 0) nên (2; 1) cũng là nghiệm duy nhất của hệ (II). Giải hệ (II) bằng phương pháp thế: (II)  { 𝑥 = −2𝑦 + 4 −3(−2𝑦+ 4) + 4𝑦 = −2 ↔ { 𝑥 = −2𝑦 + 4 10𝑦 − 12 = −2 ↔ { 𝑥 = −2𝑦 + 4 𝑦 = 1 ↔ { 𝑥 = 2 𝑦 = 1 Ví Dụ 4: Giải hệ phương trình: { 𝑥 − 2𝑦 = 1 ( 𝑚2 + 2) 𝑥 − 6𝑦 = 3𝑚 trong các trường hợp: a/ m = -1 b/ m = 0

6. GIA SƯ TÀI ĐỨC VIỆT – 0936 128 126 ↔ {√3𝑥 = −𝑦 + √2 𝑦 = 1 ↔ {√3𝑥 = −1 + √2 𝑦 = 1 ↔ { 𝑥 = √2−1 √3 𝑦 = 1 b/ HPT: { √6𝑥 + √2𝑦 = 2 𝑥 √2 − 𝑦 √3 = − 1 √6 ↔ { √3𝑥 + 𝑦 = √2 √3𝑥 − √2𝑦 = −1 ↔ { √3𝑥 + 𝑦 = √2 (1 + √2)𝑦 = 1 + √2 (trừ vế với vế của phương trình thứ nhất cho phương trình thứ hai) ↔ {√3𝑥 = √2 − 1 𝑦 = 1 ↔ { 𝑥 = √2−1 √3 𝑦 = 1 Ví Dụ 6: Cho hệ phương trình: { 𝑥 4 + 𝑦 3 = 1 2 0,25𝑥 + 0,5𝑦 = 1 ( 𝐼) 𝑣à { √2𝑎𝑥 + √3𝑏𝑦 = 5 −√3𝑎𝑥 + √2𝑏𝑦 = 5√6 (𝐼𝐼) a/ Giải hệ (I) bằng phương pháp cộng đại số. b/ Biết hệ (I) và (II) tương đương nhau. Tìm các hệ số a và b. Giải a/ (I)  { 3𝑥 + 4𝑦 = 6 𝑥 + 2𝑦 = 4 ↔ { 3𝑥 + 4𝑦 = 6 2𝑥 + 4𝑦 = 8 ↔ {3𝑥 + 4𝑦 = 6 𝑥 = −2 ↔ { 𝑥 = −2 𝑦 = 3 b/ Do (I)  (II) nên (-2; 3) cũng là nghiệm duy nhất của hệ (II). Do đó ta có: { −2√2𝑎 + 3√3𝑏 = 5 2√3𝑎 + 3√2𝑏 = 5√6 ↔ {−4𝑎 + 3√6𝑏 = 5√2 6𝑎 + 3√6𝑏 = 15√2 ↔ { 10𝑎 = 10√2 6𝑎 + 3√6𝑏 = 15√2 ↔ { 𝑎 = √2 6√2 + 3√6𝑏 = 15√2 ↔ { 𝑎 = √2 3√6𝑏 = 9√2 ↔ { 𝑎 = √2 𝑏 = √3

Recommended

Giải Toán Lớp 9 Bài 2: Hệ Hai Phương Trình Bậc Nhất Hai Ẩn

Giải Toán lớp 9 Bài 2: Hệ hai phương trình bậc nhất hai ẩn

Bài 4 (trang 11 SGK Toán 9 tập 2): Không cần vẽ hình, hãy cho biết số nghiệm của mỗi hệ phương trình sau đây và giải thích vì sao:

Lời giải

Bài 5 (trang 11 SGK Toán 9 tập 2): Đoán nhận số nghiệm của hệ phương trình sau bằng hình học:

Lời giải

Bài 6 (trang 11-12 SGK Toán 9 tập 2): Đố:

Bạn Nga nhận xét: Hai hệ phương trình bậc nhất hai ẩn vô nghiệm thì luôn tương đương với nhau.

Bạn Phương khẳng đinh: Hai hệ phương trình bậc nhất hai ẩn cùng có vô số nghiệm thì cũng luôn tương đương với nhau.

Theo em, các ý kiến đó đúng hay sai? Vì sao? (Có thể cho một ví dụ hoặc minh họa bằng đồ thị).

Lời giải

– Bạn Nga đã nhận xét đúng vì hai hệ phương trình cùng vô nghiệm có nghĩa là chúng cùng có tập nghiệm bằng ∅.

– Bạn Phương nhận xét sai. Chẳng hạn hai hệ phương trình:

đều có vô số nghiệm nhưng tập nghiệm của hệ thứ nhất được biểu diễn bởi đường thẳng y = x, còn tập nghiệm của phương trình thứ hai được biểu diễn bởi đường thẳng y = -x. Hai đường thẳng này là khác nhau nên hai hệ đang xét không tương đương (vì không có cùng tập nghiệm).

Bài 7 (trang 12 SGK Toán 9 tập 2): Cho hai phương trình 2x + y = 4 và 3x + 2y = 5.

a) Tìm nghiệm tổng quát của mỗi phương trình trên.

b) Vẽ các đường thẳng biểu diễn tập nghiệm của hai phương trình trong cùng một hệ trục tọa độ, rồi xác định nghiệm chung của chúng.

Lời giải

Hai đường thẳng cắt nhau tại M(3; -2).

Thay x = 3, y = -2 vào từng phương trình ta được:

2.3 + (-2) = 4 (thỏa mãn)

3.3 + 2.(-2) = 5 (thỏa mãn)

Vậy (x = 3; y = -2) là nghiệm chung của các phương trình đã cho.

Bài 8 (trang 12 SGK Toán 9 tập 2): Cho các hệ phương trình sau:

Trước hết, hãy đoán nhận số nghiệm của mỗi hệ phương trình trên (giải thích rõ lí do). Sau đó, tìm tập nghiệm của các hệ đã cho bằng cách vẽ hình.

Lời giải

Hệ có nghiệm duy nhất vì một đồ thị là đường thẳng x = 2 song song với trục tung, còn một đồ thị là đường thẳng y = 2x – 3 cắt hai trục tọa độ.

Ta thấy hai đường thẳng cắt nhau tại M(2; 1). Thay x = 2, y = 1 vào phương trình 2x – y = 3 ta được 2.2 -1 = 3 (thỏa mãn).

Vậy hệ phương trình có nghiệm (2; 1).

Ta thấy hai đường thẳng cắt nhau tại M(-4; 2).

Thay x = -4, y = 2 vào phương trình x + 3y = 2 ta được -4 + 3.2 = 2 (thỏa mãn).

Vậy hệ phương trình có nghiệm (-4; 2).

Bài 9 (trang 12 SGK Toán 9 tập 2): Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:

Lời giải

Vậy hệ phương trình vô nghiệm vì hai đường thẳng biểu diễn các tập nghiệm của hai phương trình trong hệ song song với nhau.

Vậy hệ phương trình vô nghiệm vì hai đường thẳng biểu diễn các tập nghiệm của hai phương trình trong hệ song song với nhau.

Bài 10 (trang 12 SGK Toán 9 tập 2): Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:

Lời giải

Vậy hệ phương trình có vô số nghiệm vì hai đường thẳng biểu diễn các tập nghiệm của hai phương trình trong hệ là trùng nhau.

Vậy hệ phương trình có vô số nghiệm vì hai đường thẳng biểu diễn các tập nghiệm của hai phương trình trong hệ là trùng nhau.

Bài 11 (trang 12 SGK Toán 9 tập 2): Nếu tìm thấy hai nghiệm phân biệt của một hệ hai phương trình bậc nhất hai ẩn (nghĩa là hai nghiệm được biểu diễn bởi hai điểm phân biệt) thì ta có thể nói gì về số nghiệm của hệ phương trình đó? Vì sao?

Lời giải

Nếu tìm thấy hai nghiệm phân biệt của một hệ phương trình bậc nhất hai ẩn thì ta có thể kết luận hệ phương trình có vô số nghiệm, vì hệ có hai nghiệm phân biệt nghĩa là hai đường thẳng biểu diễn tập nghiệm của chúng có hai điểm chung phân biệt, suy ra chúng trùng nhau.

Từ khóa tìm kiếm:

toan lop 9 bai phuong trinh bac nhat 2 an

hệ phương trình bậc nhất 2 ẩn lớp 9

giải bài tập toán 9 hệ hai phương trình bậc nhất hai ẩn

toán đại lớp 9 tập 2 bài 2:Hệ hai phương trình bậc nhất hai ẩn

giải hệ hai phương trình bậc nhất hai ẩn toan lơp 9

Chuyên Đề Giải Và Biện Luận Phương Trình Bậc Hai

A/ Giải và biện luận: Phương trình

– : phương trình trở về phương trình bậc nhất bx + c = 0.

+ pt(2) vô nghiệm.

+ : pt(2) có nghiệm kép .

+ : pt(2) có 2 nghiệm phân biệt ;

Kết luận: liệt kê từng trường hợp của tham số ứng với nghiệm của phương trình.

B/ Hệ thức Vi-et

 Hai số là hai nghiệm của phương trình khi và chỉ khi chúng thỏa các hệ thức: .

 Một số ứng dụng của hệ thức Vi-ét:

– Nhẩm nghiệm của phương trình bậc hai.

– Tìm hai số biết tổng và tích của chúng: Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là hai nghiệm của phương trình:

( Điều kiện tồn tại hai số trên là )

– Phân tích một tam thức bậc hai thành nhân tử: Nếu đa thức có hai nghiệm thì nó có thể phân tích thành nhân tử

Chuyên đề : Giải và biện luận phương trình bậc hai : Tóm tắt lý thuyết A/ Giải và biện luận: Phương trình : phương trình trở về phương trình bậc nhất bx + c = 0. : Đặt + pt(2) vô nghiệm. + : pt(2) có nghiệm kép . + : pt(2) có 2 nghiệm phân biệt ; Kết luận: liệt kê từng trường hợp của tham số ứng với nghiệm của phương trình. B/ Hệ thức Vi-et Hai số là hai nghiệm của phương trình khi và chỉ khi chúng thỏa các hệ thức: . Một số ứng dụng của hệ thức Vi-ét: Nhẩm nghiệm của phương trình bậc hai. Tìm hai số biết tổng và tích của chúng: Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là hai nghiệm của phương trình: ( Điều kiện tồn tại hai số trên là ) Phân tích một tam thức bậc hai thành nhân tử: Nếu đa thức có hai nghiệm thì nó có thể phân tích thành nhân tử Tính giá trị các biểu thức đối xứng của hai nghiệm của phương trình bậc hai: + + + C/ Các trường hợp về số nghiệm và dấu các của phương trình: Cho phương trình . Đặt trong đó là 2 nghiệm của phương trình (2) 1/ Pt(2) vô nghiệm 2/ Pt(2) có đúng 1 nghiệm 3/ Pt(2) có 2 nghiệm phân biệt 4/Pt(2) có VSN 5/ Pt(2) có 2 nghiệm trái dấu 6/ Pt(2) có 2 nghiệm dương 7/ Pt(2) có 2 nghiệm âm 8/ Pt(2) có đúng 1 nghiệm dương 9/ Pt(2) có đúng 1 nghiệm âm 10/ Pt(2) có ít nhất 1 nghiệm dương 11/Pt(2) có nghiệm kép 12/ Pt(2) có ít nhất 1 nghiệm âm Các dạng bài tập áp dụng: I/ Dạng : Giải phương trình chứa ẩn ở mẫu quy về phương trình bậc 2: Phương pháp: Đặt điều kiện: (Tìm tập xác định của phương trình). Quy đồng khử mẫu, quy về phương trình bậc hai. Giải phương trình, so với điều kiện để nhận nghiệm. Ví dụ 1: Giải phương trình Giải Điều kiện: Nghiệm phương trình Bài tập: Giải các phương trình 1/ 2/ II/ Dạng: Giải và biện luận phương trình: Ví dụ: Giải và biện luận phương trình Giải * * + : Phương trình vô nghiệm. + : Phương trình có nghiệm kép . + : Phương trình có 2 nghiệm phân biệt Kết luận: + m < 1: Phương trình vô nghiệm + m = 1: phương trình có nghiệm x = -2 + m = 2: phương trình có nghiệm + phương trình có 2 nghiệm phân biệt Bài tập áp dụng: 1/ 2/ 3/ 4/ III/ Dạng : Tìm giá trị của m để phương trình có hai nghiệm phân biệt, chứng minh phương trình luôn có nghiệm: Phương pháp: tính nếu thì phương trình luôn có hai nghiệm phân biệt Ví dụ 1: Tìm m để phương trình x2 + 5x + ( m – 4 ) = 0 có hai nghiệm phân biệt Giải Để phương trình có hai nghiệm phân biệt thì Ví dụ 2: cho phương trình x2 -2( m + 1 )x +4m = 0 Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m Tìm m để phương trình có nghiệm x1 và x2 thoả mãn điều kiện Giải a) Ta có b) Theo vi ét ta có Bài tập áp dụng: Bài tập 1: Cho phương trình x2 + ( 2m – 1 )x – m = 0 Chứng minh rằng phương trình luôn có nghiệm với mọi m Tìm m để đạt giá trị nhỏ nhất Bài tập 2:Cho phöông trình baäc hai x2 – 2(m + 1)x + m2 + 3 = 0 a)Tìm m ñeå phöông trình coù hai nghieäm phaân bieät b) Tìm m ñeå phöông trình coù nghieäm laø 2, tìm nghieäm coøn laïi c) Tìm m ñeå phöông trình coù hai nghieäm x1 vaø x2 thoaû maõn Bài tập 3: Tìm caùc giaù trò cuûa m ñeå caùc nghieäm cuûa phöông trình a) Thoaû maõn b) Thoaû maõn Bài tập 4: Cho phöông trình a) Vôùi giaù trò naøo cuûa m thì phöông trình coù hai nghieäm phaân bieät b) Tìm m ñeå phöông trình coù nghieäm thoaû maõn c) Chöùng toû raèng A = ñoäc laäp vôùi m Bài tập 5: Cho phương trình bậc hai (m – 4)x2 – 2( m – 2)x + m – 1 = 0 a ) Tìm m để phương trình có hai nghiệm phân biệt b) Tìm m để c) Tìm hệ thức giữa x1 và x2 độc lập với m giải HD: c) (1) Lấy (1) chia cho (2) ta có: II/ Dạng 2: Tìm giá trị của m để phương trình có nghiệm kép Phương pháp tính rồi xét = 0 thì phương trình có nghiệm kép Ví dụ 1:Tìm m để phương trình có nghiệm kép tìm n kép đó Giải Phương trình có nghiệm kép khi Nghiệm kép đó là Bài tập: Tìm các giá trị của m để mỗi phương trình sau có nghiệm kép tìm nghiệm kép đó IV/ Dạng : Tìm điều kiện để hai phương trình có nghiệm chung Ví dụ 1: Tìm m để hai phương trình sau và có nghiệm chung tìm nghiệm chung đó Giải Giả sử x0 là nghiệm chung của hai phương trình ta có và Trừ vế với vế của mỗi phương trình ta được ( m – 1)(x0 – 1) = 0 Nếu m = 1 thì hai phương trình đã cho trở thành x2 + x +1 = 0 Phương trình này vô nghiệm do Vậy do đó x0 = 1 Thay x0 = 1 vào phương trình (1)ta được m = -2 -Với m = -2 thì phương trình x2 – 2x + 1 = 0 có nghiệm kép x1= x2 = 1 Phương trình x2 +x – 2 = 0 có nghiệm x3 = 1; x4 = -2 Vậy nghiệm chung x0 = 1 Bài tập 1: với giá trị nào của m thì hai phương trình sau và có ít nhất một nghiệm chung tìm nhiệm chung đó. Bài tập 2: Tìm m để hai phương trình sau có nghiệm chung và V/ Dạng : Tìm điều kiện m để phương trình có nghiệm thỏa điều kiện. Ví dụ: Định m để phương trình có 2 nghiệm bằng nhau và tìm nghiệm đó. Giải: phương trình đã cho có nghiệm kép Với Với Vậy m = 0 thì nghiệm x = -1 m = 4 thì nghiệm x = 3 Bài tập 1: Tìm m để các phương trình sau có nghiệm kép và tìm nghiệm kép đó. 1/ 2/ 3/ Bài tập 2: Chứng tỏ phương trình sau có nghiệm với mọi m thuộc R 1/ 2/ 3/ 4/ Bài tập 3: Chứng tỏ phương trình sau vô nghiệm với mọi m thuộc R 1/ 2/ 3/

Bạn đang đọc nội dung bài viết Chuyên Đề Hệ Phương Trình Bậc Nhất Hai Ẩn Số trên website Asianhubjobs.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!