Đề Xuất 1/2023 # Chuyên Đề Hệ Phương Trình Đối Xứng Loại (Kiểu) I # Top 3 Like | Asianhubjobs.com

Đề Xuất 1/2023 # Chuyên Đề Hệ Phương Trình Đối Xứng Loại (Kiểu) I # Top 3 Like

Cập nhật nội dung chi tiết về Chuyên Đề Hệ Phương Trình Đối Xứng Loại (Kiểu) I mới nhất trên website Asianhubjobs.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất.

Trang 1 CHUYÊN ðỀ HỆ PHƯƠNG TRÌNH ðỐI XỨNG LOẠI (KIỂU) I TÓM TẮT GIÁO KHOA VÀ PHƯƠNG PHÁP GIẢI TOÁN I. Hệ ñối xứng loại (kiểu) I có dạng tổng quát: f(x, y) = 0 g(x, y) = 0    , trong ñó f(x, y) = f(y, x) g(x, y) = g(y, x)   Phương pháp giải chung: i) Bước 1: ðặt ñiều kiện (nếu có). ii) Bước 2: ðặt S = x + y, P = xy với ñiều kiện của S, P và 2S 4P≥ . iii) Bước 3: Thay x, y bởi S, P vào hệ phương trình. Giải hệ tìm S, P rồi dùng Vi–et ñảo tìm x, y. Chú ý: i) Cần nhớ: x2 + y2 = S2 – 2P, x3 + y3 = S3 – 3SP. ii) ðôi khi ta phải ñặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv. iii) Có những hệ phương trình trở thành ñối xứng loại I sau khi ñặt ẩn phụ. Ví dụ 1. Giải hệ phương trình 2 2 3 3 x y xy 30 x y 35  + =  + = . GIẢI ðặt S x y, P xy= + = , ñiều kiện 2S 4P≥ . Hệ phương trình trở thành: 2 2 30 PSP 30 S 90S(S 3P) 35 S S 35 S  = =  ⇔    − =   − =     S 5 x y 5 x 2 x 3 P 6 xy 6 y 3 y 2    = + = = =      ⇔ ⇔ ⇔ ∨       = = = =       . Ví dụ 2. Giải hệ phương trình 3 3 xy(x y) 2 x y 2  − = −  − = . GIẢI ðặt t y, S x t, P xt= − = + = , ñiều kiện 2S 4P.≥ Hệ phương trình trở thành: 3 3 3 xt(x t) 2 SP 2 x t 2 S 3SP 2  + = =  ⇔   + = − =   S 2 x 1 x 1 P 1 t 1 y 1   = = =    ⇔ ⇔ ⇔     = = = −     . Ví dụ 3. Giải hệ phương trình 2 2 2 2 1 1 x y 4 x y 1 1 x y 4 x y  + + + =  + + + = . GIẢI ThS. ðoàn Vương Nguyên Trang 2 ðiều kiện x 0, y 0≠ ≠ . Hệ phương trình tương ñương với: 2 2 1 1 x y 4 x y 1 1 x y 8 x y        + + + =                 + + + =          ðặt 2 1 1 1 1 S x y ,P x y ,S 4P x y x y             = + + + = + + ≥                      ta có: 2 1 1 x y 4 S 4 S 4 x y P 4 1 1S 2P 8 x y 4 x y        + + + =     = =         ⇔ ⇔      =− =      + + =         1 x 2 x 1x 1 y 1 y 2 y  + =  = ⇔ ⇔    = + = . Ví dụ 4. Giải hệ phương trình 2 2x y 2xy 8 2 (1) x y 4 (2)  + + =   + = . GIẢI ðiều kiện x, y 0≥ . ðặt t xy 0= ≥ , ta có: 2xy t= và (2) x y 16 2t⇒ + = − . Thế vào (1), ta ñược: 2t 32t 128 8 t t 4− + = − ⇔ = Suy ra: xy 16 x 4 x y 8 y 4  = =  ⇔   + = =   . II. ðiều kiện tham số ñể hệ ñối xứng loại (kiểu) I có nghiệm Phương pháp giải chung: i) Bước 1: ðặt ñiều kiện (nếu có). ii) Bước 2: ðặt S = x + y, P = xy với ñiều kiện của S, P và 2S 4P≥ (*). iii) Bước 3: Thay x, y bởi S, P vào hệ phương trình. Giải hệ tìm S, P theo m rồi từ ñiều kiện (*) tìm m. Chú ý: Khi ta ñặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv thì nhớ tìm chính xác ñiều kiện u, v. Ví dụ 1 (trích ñề thi ðH khối D – 2004). Tìm ñiều kiện m ñể hệ phương trình sau có nghiệm thực: x y 1 x x y y 1 3m  + =   + = − . GIẢI ThS. ðoàn Vương Nguyên Trang 3 ðiều kiện x, y 0≥ ta có: 3 3 x y 1 x y 1 x x y y 1 3m ( x) ( y) 1 3m   + = + =  ⇔   + = − + = −    ðặt S x y 0,P xy 0= + ≥ = ≥ , 2S 4P.≥ Hệ phương trình trở thành: 2 S 1 S 1 P mS 3SP 1 3m  = =  ⇔    =− = −  . Từ ñiều kiện 2S 0,P 0,S 4P≥ ≥ ≥ ta có 10 m 4 ≤ ≤ . Ví dụ 2. Tìm ñiều kiện m ñể hệ phương trình 2 2 x y xy m x y xy 3m 9  + + =  + = − có nghiệm thực. GIẢI 2 2 x y xy m (x y) xy m xy(x y) 3m 9x y xy 3m 9  + + = + + =  ⇔    + = −+ = −  . ðặt S = x + y, P = xy, 2S 4P.≥ Hệ phương trình trở thành: S P m SP 3m 9  + =  = − . Suy ra S và P là nghiệm của phương trình 2t mt 3m 9 0− + − = S 3 S m 3 P m 3 P 3  = = −  ⇒ ∨   = − =   . Từ ñiều kiện ta suy ra hệ có nghiệm 2 2 3 4(m 3) 21 m m 3 2 3 (m 3) 12 4  ≥ − ⇔ ⇔ ≤ ∨ ≥ + − ≥ . Ví dụ 3. Tìm ñiều kiện m ñể hệ phương trình x 4 y 1 4 x y 3m  − + − =   + = có nghiệm. GIẢI ðặt u x 4 0, v y 1 0= − ≥ = − ≥ hệ trở thành: 2 2 u v 4u v 4 21 3mu v 3m 5 uv 2  + = + =  ⇔  − + = − =   . Suy ra u, v là nghiệm (không âm) của 2 21 3mt 4t 0 2 − − + = (*). Hệ có nghiệm ⇔ (*) có 2 nghiệm không âm / 3m 130 0 132S 0 m 7 21 3m 3 0P 0 2  −∆ ≥  ≥ ⇔ ≥ ⇔ ⇔ ≤ ≤    −  ≥≥    . ThS. ðoàn Vương Nguyên Trang 4 Ví dụ 4. Tìm ñiều kiện m ñể hệ phương trình 2 2x y 4x 4y 10 xy(x 4)(y 4) m  + + + =  + + = có nghiệm thực. GIẢI 2 22 2 2 2 (x 4x) (y 4y) 10x y 4x 4y 10 xy(x 4)(y 4) m (x 4x)(y 4y) m   + + + = + + + = ⇔   + + = + + =   . ðặt 2 2u (x 2) 0, v (y 2) 0= + ≥ = + ≥ . Hệ phương trình trở thành: u v 10 S 10 uv 4(u v) m 16 P m 24  + = =  ⇔   − + = − = +   (S = u + v, P = uv). ðiều kiện 2S 4P S 0 24 m 1 P 0  ≥ ≥ ⇔ − ≤ ≤  ≥ . BÀI TẬP Giải các hệ phương trình sau 1. 2 2 x y xy 5 x y xy 7  + + =  + + = . ðáp số: x 1 x 2 y 2 y 1  = =  ∨   = =   . 2. 2 2x xy y 3 2x xy 2y 3  + + =  + + = − . ðáp số: x 1 x 3 x 3 y 1 y 3 y 3    = − = = −   ∨ ∨     = − = − =      . 3. 3 3 x y 2xy 2 x y 8  + + =  + = . ðáp số: x 2 x 0 y 0 y 2  = =  ∨   = =   . 4. 3 3x y 7 xy(x y) 2  − =  − = . ðáp số: x 1 x 2 y 2 y 1  = − =  ∨   = − =   . 5. 2 2 x y 2xy 5 x y xy 7  − + =  + + = . ðáp số: 1 37 1 37 x xx 2 x 1 4 4 y 1 y 2 1 37 1 37 y y 4 4   − + = =  = = −      ∨ ∨ ∨       = = − − − − +     = =     . 6. 2 2 2 2 1 (x y)(1 ) 5 xy 1 (x y )(1 ) 49 x y  + + =  + + = . ðáp số: x 1 x 17 3 5 7 3 5 x x 2 2 7 3 5 7 3 5 y yy 1 y 1 2 2    = − = −   − +   = =   ∨ ∨ ∨   − +   = =   = − = −          . ThS. ðoàn Vương Nguyên Trang 5 7. x y y x 30 x x y y 35  + =   + = . ðáp số: x 4 x 9 y 9 y 4  = =  ∨   = =   . 8. x y 7 1 y x xy x xy y xy 78  + = +  + = y 9 y 4  = =  ∨   = =   . 9. ( ) 2 23 3 3 3 2(x y) 3 x y xy x y 6  + = +  + = . ðáp số: x 8 x 64 y 64 y 8  = =  ∨   = =   . 10. Cho x, y, z là nghiệm của hệ phương trình 2 2 2x y z 8 xy yz zx 4  + + =  + + = . Chứng minh 8 8x, y, z 3 3 − ≤ ≤ . HƯỚNG DẪN GIẢI Hệ phương trình 2 2 2 2 2x y 8 z (x y) 2xy 8 z xy z(x y) 4 xy z(x y) 4   + = −  + − = − ⇔ ⇔   + + = + + =   2 2(x y) 2[4 z(x y)] 8 z xy z(x y) 4  + − − + = −⇔   + + = 2 2(x y) 2z(x y) (z 16) 0 xy z(x y) 4  + + + + − =⇔   + + = 2 2 x y 4 z x y 4 z xy (z 2) xy (z 2)  + = − + = − −  ⇔ ∨   = − = +   . Do x, y, z là nghiệm của hệ nên: 2 2 2 2 2 (4 z) 4(z 2) 8 8 (x y) 4xy z ( 4 z) 4(z 2) 3 3  − ≥ − + ≥ ⇔ ⇔ − ≤ ≤ − − ≥ + . ðổi vai trò x, y, z ta ñược 8 8x, y, z 3 3 − ≤ ≤ . 11. x y 1 1 1 16 16 2 x y 1        + =          + = . ðáp số: 1 x 2 1 y 2  =   = . 12. sin (x y) 2 2 2 1 2(x y ) 1 π + =  + = HƯỚNG DẪN GIẢI Cách 1: sin (x y) 2 2 2 22 2 sin (x y) 0 x y (1)2 1 2(x y ) 1 2(x y ) 1 (2)2(x y ) 1 π +  π + = + ∈ =    ⇔ ⇔     + = + =+ =    Z 2 2 2 2 1 2 2 x x1 2 2 2(2) x y 2 x y 2 12 2 2y y 2 2 2    ≤ − ≤ ≤  ⇔ + = ⇒ ⇒ ⇒ − ≤ + ≤    ≤ − ≤ ≤    . x y 0 (1) x y 1  + = ⇒  + = ± thế vào (2) ñể giải. ThS. ðoàn Vương Nguyên Trang 6 Cách 2: ðặt S = x + y, P = xy. Hệ trở thành: sinS 22 S2 1 4P 2S 12(S 2P) 1 π  ∈ =  ⇔    = −− =  Z . Từ ñiều kiện 2S 4P≥ ta suy ra kết quả tương tự. Hệ có 4 nghiệm phân biệt 1 1 1 1 x x x x 2 2 2 2 1 1 1 1 y y y y 2 2 2 2          = = − = = −      ∨ ∨ ∨          = = − = − =          . Tìm ñiều kiện của m ñể các hệ phương trình thỏa yêu cầu 1. Tìm m ñể hệ phương trình 2 2x xy y m 6 2x xy 2y m  + + = +  + + = có nghiệm thực duy nhất. HƯỚNG DẪN GIẢI Hệ có nghiệm duy nhất suy ra x = y, hệ trở thành: 2 2 2 2 2 3x m 6 3x 6 m m 3 m 21x 4x m x 4x 3x 6    = +  − = = −  ⇔ ⇒    =+ = + = −     . + m = – 3: 2 2 2x xy y 3 (x y) xy 3 2(x y) xy 3 2(x y) xy 3   + + =  + − = ⇔   + + = − + + = −   x y 0 x y 2 x 3 x 3 x 1 xy 3 xy 1 y 1y 3 y 3     + = + = − = = − = −     ⇔ ∨ ⇔ ∨ ∨         = − = = −= − =         (loại). + m = 21: 2 2 2x xy y 27 (x y) xy 27 2x xy 2y 21 2(x y) xy 21   + + =  + − = ⇔   + + = + + =   x y 8 x y 6 x 3 xy 37 xy 9 y 3   + = − + = =    ⇔ ∨ ⇔     = = =     (nhận). Vậy m = 21. 2. Tìm m ñể hệ phương trình: 2 2 x xy y m 1 x y xy m  + + = +  + = HƯỚNG DẪN GIẢI 2 2 x xy y m 1 (x y) xy m 1 xy(x y) mx y xy m  + + = + + + = +  ⇔    + =+ =  x y 1 x y m xy m xy 1  + = + =  ⇔ ∨   = =   . Hệ có nghiệm thực dương 2 m 0 1 0 m m 2 1 4m m 4 4  ≥ ∨ ≥ . Vậy 10 m m 2 4 < ≤ ∨ ≥ . ThS. ðoàn Vương Nguyên Trang 7 3. Tìm m ñể hệ phương trình x y m x y xy m  + =   + − = có nghiệm thực. HƯỚNG DẪN GIẢI ( ) 22 x y mx y mx y m m m x y xy m xyx y 3 xy m 3  + =  + = + =  ⇔ ⇔   −  + − = =+ − =      . Suy ra x, y là nghiệm (không âm) của phương trình 2 2 m mt mt 0 3 − − + = (*). Hệ có nghiệm ⇔ (*) có 2 nghiệm không âm / 2 2 0 m 4m 0 m 0 S 0 m 0 1 m 4 P 0 m m 0  ∆ ≥ − ≤  =  ⇔ ≥ ⇔ ≥ ⇔    ≤ ≤  ≥ − ≥    . Vậy m 0 1 m 4= ∨ ≤ ≤ . 4. Tìm m ñể hệ phương trình 2 2 2 x y 2(1 m) (x y) 4  + = +  + = có ñúng 2 nghiệm thực phân biệt. HƯỚNG DẪN GIẢI 2 2 2 2 2 x y 2(1 m) (x y) 2xy 2(1 m) (x y) 4 (x y) 4   + = +  + − = + ⇔   + = + =   xy 1 m xy 1 m x y 2 x y 2  = − = −  ⇔ ∨   + = + = −   . Hệ có ñúng 2 nghiệm thực phân biệt khi ( ) 2 2 4(1 m) m 0± = − ⇔ = . 5. Cho x, y là nghiệm của hệ phương trình 2 2 2 x y 2m 1 x y m 2m 3  + = −  + = + − . Tìm m ñể P = xy nhỏ nhất. HƯỚNG DẪN GIẢI ðặt S x y, P xy= + = , ñiều kiện 2S 4P.≥ 2 2 2 2 2 x y 2m 1 S 2m 1 x y m 2m 3 S 2P m 2m 3  + = − = −  ⇔   + = + − − = + −   2 2 2 S 2m 1S 2m 1 3(2m 1) 2P m 2m 3 P m 3m 2 2  = − = − ⇔ ⇔   − − = + − = − +   Từ ñiều kiện suy ra 2 2 4 2 4 2(2m 1) 6m 12m 8 m . 2 2 − + − ≥ − + ⇔ ≤ ≤ Xét hàm số 23 4 2 4 2f(m) m 3m 2, m 2 2 2 − + = − + ≤ ≤ . Ta có 4 2 11 6 2 4 2 4 2min f(m) f , m ; 2 4 2 2    − − − +  = = ∀ ∈        Vậy 11 6 2 4 2min P m 4 2 − − = ⇔ = .

Hệ Phương Trình Đối Xứng Loại 2

Hệ phương trình đối xứng loại 2 là một dạng hệ phương trình các bạn được học trong chương trình Toán lớp 11. Để giải được bài tập của dạng toán này. C ác bạn cần hiểu được định nghĩa và các dạng của hệ PT đối xứng loại 2 như thế nào? Do đó, để bổ trợ cho các bạn trong quá trình học tập và ôn tập. Chúng tôi có tổng hợp đầy đủ kiến thức lý thuyết cần nhớ và bài tập vận dụng. Mời các bạn tham khảo tài liệu bên dưới.

Trọng tâm kiến thức về hệ phương trình đối xứng loại 2.

Hệ PT đối xứng loại 2 là hệ PT chứa hai ẩn x và y mà khi ta thay đổi vai trò x, y cho nhau thì PT này trở thành PT kia của hệ. Hay được tổng quát dưới dạng: f(x, y) = a và f(y, x) = a.

Hệ PT đối xứng loại 2 có 2 dạng toán. Đó là:

Dạng 1: f(x,y) = 0 và f(y, x) = 0 (đổi vị trí x và y cho nhau thì phương trình này trở thành phương trình kia)

Phương pháp giải: Lấy hai phương trình trừ vế với vế và biến đổi về dạng tích số. Sau đó, kết hợp một PT tích số với một PT của hệ để suy ra nghiệm của hệ PT

Phương pháp giải: Đưa phương trình đối xứng về dạng tích, giải y theo x rồi thế vào phương trình còn lại để tìm nghiệm.

Hệ PT đối xứng loại 2 sẽ có 2 chú ý các bạn cần nhớ. Hãy tham khảo bài học bên dưới để nắm rõ các chú ý.

Bí quyết đạt điểm cao với bài toán hệ phương trình.

Để làm tốt bài tập về hệ PT hay hệ PT đối xứng loại 2, các bạn cần làm tốt bài tập PT. Vì hệ phương trình là dạng toán kết hợp từ các phương trình với nhau.

Do đó, bằng cách rèn luyện nhiều bài tập về phương trình và hệ PT sẽ giúp học tốt hơn. Hãy tham khảo tài liệu bên dưới để có thêm nhiều bài tập ôn luyện.

Tải tài liệu miễn phí ở đây

Cách Giải Hệ Phương Trình Đối Xứng Loại 1 Cực Hay

Cách giải hệ phương trình đối xứng loại 1 cực hay

A. Phương pháp giải

Hệ phương trình đối xứng loại I theo ẩn x và y làHệ phương trình mà khi ta đổi vai trò của các ẩn x và y thìHệ phương trình vẫn không thay đổi.

Hệ phương trình đối xứng loại I có dạng

Biến đổi Hệ phương trình có hai ẩn S, P giải ra S và P (sử dụng phương pháp thế hoặc cộng đại số).

Giải phương trình bậc hai theo ẩn X.

Bước 4: Kết luận nghiệm của hệ phương trình.

Nếu (x 0;y 0) là nghiệm củaHệ phương trình thì (y 0;x 0) cũng là nghiệm của hệ phương trình.

B. Ví dụ minh họa

Ví dụ 1: Giải hệ phương trình .

Hướng dẫn:

Ví dụ 2: Giải hệ phương trình .

Hướng dẫn:

Vậy hệ phương trình có nghiệm là (1;3), (3;1).

Ví dụ 3: Giải hệ phương trình .

Hướng dẫn:

Điều kiện xác định: x ≥ 0; y ≥ 0.

C. Bài tập trắc nghiệm

Câu 1: Hệ phương trình sau có bao nhiêu nghiệm:

 A. 1

B. 2

 C. 3

D. 4

Câu 2: Hệ phương trình sau có bao nhiêu nghiệm:

 A. 1

B. 2

 C. 3

D. 4

Câu 3: Hệ phương trình sau có bao nhiêu nghiệm:

 A. 1

B. 2

 C. 3

D. 4

Câu 4: Hệ phương trình sau: . Chọn nghiệm đúng của hệ phương trình.

A. (4;7) và (7;4)

B. (-1;-8) và (-8;-1)

C. (1;2) và (2;1)

D. A và B

Câu 5: Hệ phương trình sau: . Đâu không phải là nghiệm đúng của hệ phương trình.

A. (1;6) và (6;1)

B. (2;3) và (3;2)

C. (-3;-7)

D. (-7;-3)

Câu 6: Hệ phương trình sau: . Khẳng định nào sau đây không đúng?

A. Hệ phương trình có 2 nghiệm.

B. Hệ phương trình vô số nghiệm.

C. Một nghiệm của hệ là: (-2;3).

D. Nghiệm của hệ là: (-2;3); ((3;-2).

Câu 7: Hệ phương trình sau: . Khẳng định nào sau đây không sai?

A. Hệ phương trình có 1 nghiệm.

B. Hệ phương trình vô số nghiệm.

C. Một nghiệm của hệ là: (-2; 0).

D. Nghiệm của hệ là: (2; 0);(0; 2).

Câu 8: Hệ phương trình sau: . Khẳng định nào sau đây sai ?

A. Hệ phương trình có 4 nghiệm.

B. Hai nghiệm (1;2) và (2;1) là nghiệm của hệ phương trình.

C. Hệ phương trình có 2 nghiệm.

D. A, B đúng.

Câu 9: Hệ phương trình sau: . Khẳng định nào sau đây đúng?

A. Hệ phương trình có 2 nghiệm.

B. Hệ phương trình 4 nghiệm.

C. Một nghiệm của hệ là: (2; 4).

D. Hai nghiệm của hệ là (2;4); (4;2)

Câu 10: Cho hệ phương trình: . Với giá trị nào của m để hệ có nghiệm thực?

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k6: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết – Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Bài Tập Hệ Phương Trình Đối Xứng

Bài tập hệ phương trình đối xứng

BÀI TẬP HỆ PHƯƠNG TRÌNH_Loại 1:Hệ phương trình đối xứng loại 1Bài 1: Giải các hệ phương trình sau:

Bài 2: Cho hệ phương trình sau: a.Tìm m để hệ phương trình có 1 nghiệm duy nhất. b.Tìm m để hệ có 2 nghiệm phân biệt.Bài 3:Cho hệ phương trình: a.Giải hệ với m = 1. b.Tìm m để hệ phương trình có đúng 2 cặp nghiệmBài 4: Cho hệ phương trình: a.Giải hệ với m = -3. b.Tìm m để hệ phương trình có nghiệm duy nhất.Bài 5: Cho hệ phương trình: Tìm m để hệ phương trình có nghiệm.Bài 6: Giải các hệ phương trình sau:

Loại 2: Hệ phương trình đối xứng loại 2Bài 1: Giải các hệ phương trình sau:

Bài 2: Tìm m để hệ phương trình sau có 1 nghiệm duy nhất

ĐỀ THI THỬ ĐẠI HỌC – CAO ĐẲNG- ĐỀ SỐ 4PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm)Câu I (2 điểm) Cho hàm số , m là tham số 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên khi m = 1. 2. Xác định các giá trị của m để hàm số không có cực trị.Câu II (2 điểm) 1. Giải phương trình : 2. Giải phương trình: Câu III (1 điểm) Tính tích phân Câu IV (1 điểm) Cho hình nón có đỉnh S, đáy là đường tròn tâm O, SA và SB là hai đường sinh, biết SO = 3, khoảng cách từ O đến mặt phẳng SAB bằng 1, diện tích tam giác SAB bằng 18. Tính thể tích và diện tích xung quanh của hình nón đã cho.Câu V (1 điểm) Tìm m để hệ bất phương trình sau có nghiệm PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2)1. Theo chương trình chuẩn.Câu VI.a (2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC biết phương trình các đường thẳng chứa các cạnh AB, BC lần lượt là 4x + 3y – 4 = 0; x – y – 1 = 0. Phân giác trong của góc A nằm trên đường thẳng x + 2y – 6 = 0. Tìm tọa độ các đỉnh của tam giác ABC. 2. Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng Viết phương trình của mặt cầu (S) đi qua gốc tọa độ O, qua điểm A(5;2;1) và tiếp xúc với cả hai mặt phẳng (P) và (Q).Câu VII.a (1 điểm) Tìm số nguyên dương n thỏa mãn các điều kiện sau:(Ở đây lần lượt là số chỉnh hợp và số tổ hợp chập k của n phần tử)2. Theo chương trình nâng cao.Câu VI.b)1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: x – 5y – 2 = 0 và đường tròn (C): .Xác định tọa độ các giao điểm A, B của đường tròn (C) và đường thẳng d (cho biết điểm A có hoành độ dương). Tìm tọa độ C thuộc đường tròn (C) sao cho tam giác ABC vuông ở B. 2. Cho mặt phẳng (P): và các đường thẳng . Tìm các điểm sao cho MN

Bạn đang đọc nội dung bài viết Chuyên Đề Hệ Phương Trình Đối Xứng Loại (Kiểu) I trên website Asianhubjobs.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!