Đề Xuất 1/2023 # Chuyên Đề Một Số Phương Pháp Giải Hệ Phương Trình # Top 3 Like | Asianhubjobs.com

Đề Xuất 1/2023 # Chuyên Đề Một Số Phương Pháp Giải Hệ Phương Trình # Top 3 Like

Cập nhật nội dung chi tiết về Chuyên Đề Một Số Phương Pháp Giải Hệ Phương Trình mới nhất trên website Asianhubjobs.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất.

SỞ GD VÀ ĐT HẢI DƯƠNG CHUYÊN ĐỀ DẠY THÊM TRƯỜNG THPT ĐOÀN THƯỢNG GIÁO VIÊN : NGUYỄN TRƯỜNG SƠN CHUYÊN ĐỀ MỘT SỐ PHƯƠNG PHÁP GIẢI HỆ PHƯƠNG TRÌNH Nội dung : Phương pháp thế. Phương pháp cộng đại số. Phương pháp biến đổi thành tích. Phương pháp đặt ẩn phụ. Phương pháp hàm số. Phương pháp sử dụng bất đẳng thức Tài liệu dạy thêm tự soạn. Nghiêm cấm sao chép in ấn dưới mọi hình thức. Tác giả : Nguyễn Trường Sơn Gmail : ngoisaocodon1911@gmail.com Sđt : 0988.503.138 Bài 1 : Một số dạng hệ phương trình đặc biệt. Hệ bậc nhất hai ẩn, ba ẩn. Hệ gồm một phương trình bậc nhất và phương trình bậc cao. PP chung : Sử dụng phương pháp thế. Hệ 2 phương trình. Hệ 3 phương trình. Hệ đối xứng loại 1. PP chung : Đặt ẩn phụ Hệ đối xứng loại 2. PP chung : Trừ từng vế hai phương trình cho nhau ta được : Hệ phương trình đẳng cấp bậc hai. PP chung : Có 2 cách giải Đặt ẩn phụ Chia cả hai vế cho , và đặt Bài 2 : Một số phương pháp giải hệ phương trình Phương pháp thế. * Cơ sở phương pháp. Ta rút một ẩn (hay một biểu thức) từ một phương trình trong hệ và thế vào phương trình còn lại. * Nhận dạng. Phương pháp này thường hay sử dụng khi trong hệ có một phương trình là bậc nhất đối với một ẩn nào đó. Bài 1 . Giải hệ phương trình Lời giải. Từ (1) ta có thế vào (2) ta được Vậy tập nghiệm của hệ phương trình là Bài 2 Giải hệ phương trình sau : Bài 3 Giải hệ : PT (2) là bậc nhất với y nên Từ (2) thay vào PT (1). Nghiệm Bài 4 a) Giải hệ : PT (2) là bậc nhất với y nên Từ (2) thay vào PT (1). b) Giải hệ : Bài 6 (Thử ĐT2012) Giải hệ : . Từ (1) thay vào (2). Nghiệm Bài 7. Giải hệ phương trình Phân tích. Phương trình (2) là bậc nhất đối với y nên ta dùng phép thế. Lời giải. TH 1 : x = 0 không thỏa mãn (2) TH 2 : thế vào (1) ta được Do nên hệ phương trình có nghiệm duy nhất Chú ý.: Hệ phương trình này có thể thế theo phương pháp sau: Hệ Phương pháp thế thường là công đoạn cuối cùng khi ta sử dụng các phương pháp khác Bài 8 (D – 2009 ) Giải hệ : . Từ (1) thế và thay vào PT (2). Bài 9 Giải hệ : HD : Thế (1) vào PT (2) và rút gọn ta được : Phương pháp cộng đại số. * Cơ sở phương pháp. Kết hợp 2 phương trình trong hệ bằng các phép toán: cộng, trừ, nhân, chia ta thu được phương trình hệ quả mà việc giải phương trình này là khả thi hoặc có lợi cho các bước sau. * Nhận dạng. Phương pháp này thường dùng cho các hệ đối xứng loại II, hệ phương trình có vế trái đẳng cấp bậc k. Bài 1 Giải hệ phương trình Bài 2. Giải hệ phương trình Lời giải. ĐK: Hệ . Trừ vế hai phương trình ta được TH 1. thế vào (1) ta được TH 2. . Từ , . Do đó TH 2 không xảy ra. Vậy hệ phương trình có nghiệm duy nhất (1 ; 1) Bài 2 Giải hệ phương trình Lời giải. ĐK: . Trừ vế hai pt ta được TH 1. thế vào (1) ta được Đặt ta được và TH 2. . TH này vô nghiệm do ĐK. Vậy hệ có nghiệm duy nhất (1; 1) Bài 5 Giải hệ phương trình: Bài 3. Giải hệ phương trình Phân tích. Đây là hệ phương trình có vế trái đẳng cấp bậc hai nên ta sẽ cân bằng số hạng tự do và thực hiện phép trừ vế. Lời giải. - Hệ - Giải phương trình này ta được thế vào một trong hai phương trình của hệ ta thu được kết quả * Chú ý Cách giải trên có thể áp dụng cho pt có vế trái đẳng cấp bậc cao hơn. Cách giải trên chứng tỏ rằng hệ phương trình này hoàn toàn giải được bằng cách đặt hoặc đặt . Bài 4. Tìm các giá trị m để hệ có nghiệm. Phân tích. Để có kết quả nhanh hơn ta sẽ đặt ngay Lời giải. TH 1. Vậy hệ có nghiệm TH 2. , Đặt . Hệ Ta có nên hệ có nghiệm pt (*) có nghiệm. Điều này xảy ra khi và chỉ khi hoặc Kết luận. Bài 5. Tìm các giá trị của m để hệ (I) có nghiệm. Lời giải. Nhân 2 vế của bpt thứ hai với -3 ta được Cộng vế hai bpt cùng chiều ta được Điều kiện cần để hệ bpt có nghiệm là Điều kiện đủ. Với . Xét hệ pt (II) Giả sử là nghiệm của hệ (II). Khi đó Vậy mọi nghiệm của hệ (II) đều là nghiệm của hệ (I) (II) Thay vào pt thứ 2 của hệ (II) ta được Hệ (II) có nghiệm, do đó hệ (I) cũng có nghiệm. Vậy . Bài 6. Giải hệ phương trình Phân tích. Các biểu thức trong ngoặc có dạng a + b và a – b nên ta chia hai vế pt thứ nhất cho và chia hai vế pt thứ hai cho . Lời giải. ĐK: . Dễ thấy hoặc không thỏa mãn hệ pt. Vậy Hệ Nhân theo vế hai pt trong hệ ta được TH 1. thế vào pt (1) ta được TH 2. không xảy ra do . Vậy hệ pt có nghiệm duy nhất . Chú ý. Hệ phương trình có dạng . Trong trường hợp này, dạng thứ nhất có vế phải chứa căn thức nên ta chuyển về dạng thứ hai sau đó nhân vế để mất căn thức. Tổng quát ta có hệ sau: Bài 7. Giải hệ phương trình Phân tích. Nếu chia hai vế của mỗi phương trình cho thì ta được hệ mới đơn giản hơn. TH 1. . Nếu thì hệ hoặc Tương tự với và ta thu được các nghiệm là TH 2. . Chia hai vế của mỗi pt trong hệ cho ta được . Cộng vế 3 phương trình của hệ ta được : Từ (4) và (1) ta có Tứ (4) và (2) ta có . Từ (4) và (3) ta có Tương tự, từ (5), (1), (2), (3) ta có . Vậy hệ có tập nghiệm là S = Nhận xét. Qua ví dụ trên ta thấy: từ một hệ phương trình đơn giản, bằng cách đổi biến số (ở trên là phép thay nghịch đảo) ta thu được một hệ phức tạp. Vậy đối với một hệ phức tạp ta sẽ nghĩ đến phép đặt ẩn phụ để hệ trở nên đơn giản. Phương pháp biến đổi thành tích. * Cơ sở phương pháp. Phân tích một trong hai phương trình của hệ thành tích các nhân tử. Đôi khi cần kết hợp hai phương trình thành phương trình hệ quả rồi mới đưa về dạng tích. Bài 1 (Khối D – 2012) Giải hệ Biến đổi phương trình (2) thành tích. Hoặc coi phương trình (2) là bậc hai với ẩn x hoặc y. Hệ đã cho . Hệ có 3 nghiệm Bài 2. (D – 2008) Giải hệ phương trình Phân tích. Rõ ràng, việc giải phương trình (2) hay kết hợp (1) với (2) không thu được kết quả khả quan nên chúng ta tập trung để giải (1). Lời giải. ĐK: (1) TH 1. (loại do ) TH 2. thế vào pt (2) ta được . Do . Vậy hệ có nghiệm Chú ý. Do có thể phân tích được thành tích của hai nhân tử bậc nhất đối y (hay x) nên có thể giải pt (1) bằng cách coi (1) là pt bậc hai ẩn y (hoặc x). Bài 3. (A – 2003) Giải hệ phương trình Phân tích. Từ cấu trúc của pt (1) ta thấy có thể đưa (1) về dạng tích. Lời giải. ĐK: . (1) TH 1. thế vào (2) ta được hoặc (t/m) TH 2. thế vào (2) ta được . PT này vô nghiệm. Vậy tập nghiệm của hệ là S = Bài 3. (Thi thử GL) Giải hệ phương trình Lời giải. TH 1. thế vào pt thứ hai ta được TH 2. . (2) Trường hợp này không xảy ra do Vậy tập nghiệm của hệ phương trình là S = Bài 4. Giải hệ phương trình Phân tích. Rõ ràng, việc giải phương trình (2) hay kết hợp (1) với (2) không thu được kết quả khả quan nên chúng ta tập trung để giải (1) Lời giải. ĐK: . (1) TH 1. thế vào (2) ta được TH 2. vô nghiệm do ĐK Vậy tập nghiệm của hệ là S = Bài 5 (Thử ĐT 2013) Giải hệ phương trình Điều kiện : PT 0,25 Từ PT (2) ta có 0,25 PT , thay vào PT (2) ta được : hoặc 0,25 Kết hợp với điều kiện ta có , KL: Vậy hệ đã cho có hai nghiệm (x; y) là : 0,25 Bài 6 (A – 2011 ) Giải hệ PT : HD : Biến đổi PT (2) thành tích ta có . TH1:thay vào PT (1). TH 2: PT(1) Bài 7 (Thử GL 2012) Giải hệ : HD : Từ (2) thay vào (1) ta có : Phương pháp đặt ẩn phụ. Bài 1. Giải hệ phương trình Lời giải. Đây là hệ đối xứng loại I đơn giản nên ta giải theo cách phổ biến. Hệ Đặt ta được TH 1. TH 2. . Vậy tập nghiệm của hệ là S = Chú ý. Nếu hệ pt có nghiệm là thì do tính đối xứng, hệ cũng có nghiệm là . Do vậy, để hệ có nghiệm duy nhất thì điều kiện cần là . Không phải lúc nào hệ đối xứng loại I cũng giải theo cách trên. Đôi khi việc thay đổi cách nhìn nhận sẽ phát hiện ra cách giải tốt hơn. Bài tập tương tự : (ĐT 2010) Giải hệ phương trình: Bài 2 (D – 2004 )Tìm m để hệ có nghiệm : Bài 4. Giải hệ phương trình Phân tích. Đây là hệ đối xứng loại I Hướng 1. Biểu diễn từng pt theo tổng và tích Hướng 2. Biểu diễn từng pt theo và . Rõ ràng hướng này tốt hơn. Lời giải. Hệ . Đặt ta được TH 1. TH 2. Đổi vai trò của a và b ta được . Vậy tập nghiệm của hệ là S = Nhận xét. Bài toán trên được hình thành theo cách sau Xuất phát từ hệ phương trình đơn giản (I) Thay vào hệ (I) ta được hệ (1) đó chính là ví dụ 2. Thay vào hệ (I) ta được hệ (2) Thay vào hệ (I) ta được hệ (3) Thay vào hệ (I) ta được hệ (4) Thay vào hệ (I) ta được hệ (5) Như vậy, với hệ xuất (I), bằng cách thay biến ta thu được rất nhiều hệ pt mới. Thay hệ xuất phát (I) bằng hệ xuất phát (II) và làm tương tự như trên ta lại thu được các hệ mới khác. Chẳng hạn : Thay vào hệ (II) ta được hệ (6) Thay vào hệ (II) ta được hệ (7) Thay vào hệ (II) ta được hệ (8) Thay vào hệ (II) ta được hệ (9) Thay vào hệ (II) ta được hệ (10) ... Bài 5 (D – 2007 ) Tìm m để hệ có nghiệm : . Đặt ẩn phụ Điều kiện Ta có hệ Bài 6 Giải hệ phương trình : (CĐ – 2010 ) (B – 2002) Bài 7 (Sát hạch khối 10 năm 2012) Giải hệ : a) Hệ Đặt Nghiệm b) Hệ Đặt Nghiệm Bài 8 (D – 2009 ) Giải hệ phương trình : ĐK. . Hệ Đặt ta được hệ : Bài 9 (A – 2008) Giải hệ phương trình : Hệ . Đặt ta được : Vậy tập nghiệm của hệ pt là S = Bài 10 Giải hệ phương trình : Hệ . Đặt ta được hệ hoặc Với hoặc Với hoặc Cách 2 : Thế (1) vào PT (2) và rút gọn ta được : Bài 11 (A – 2006) Giải hệ phương trình : ĐK: Hệ Đặt . ta được hệ pt (thỏa mãn đk) Bài 12 (Thử ĐT2010) Giải hệ phương trình: . Bình phương cả 2 PT. Bài 13 (Thử GL 2012) Giải hệ : PT (1) PT (2) Ta có Bài 14 (ĐT 2011) Giải hệ : . Lần lượt chia cho và đặt ẩn phụ. Bài 15 (B – 2009 ) Giải hệ : . Lần lượt chia cho và đặt ẩn phụ. Bài 16 (Thử ĐT2012) Giải hệ : Chia 2 vế của 2 PT cho y và đặt ẩn phụ. Bài 17 Giải hệ phương trình: Phương pháp hàm số. * Cơ sở phương pháp. Nếu đơn điệu trên khoảng và thì : Bài 1 Giải các HPT sau : Bài 2 Giải hệ phương trình : Bài 3. Giải hệ phương trình Phân tích. Ta có thể giải hệ trên bằng phương pháp đưa về dạng tích. Tuy nhiên ta muốn giải hệ này bằng phương pháp sử dụng tính đơn điệu của hàm số. Hàm số không đơn điệu trên toàn trục số, nhưng nhờ có (2) ta giới hạn được x và y trên đoạn . Lời giải. Từ (2) ta có Hàm số có nghịch biến trên đoạn . nên (1) thế vào pt (2) ta được . Vậy tập nghiệm của hệ là S = Nhận xét. Trong TH này ta đã hạn chế miền biến thiên của các biến để hàm số đơn điệu trên đoạn đó. Bài 4 Giải hệ phương trình: PT Xét hàm . HS đồng biến. Từ (1) Thay và (2) tiếp tục sử dụng PP hàm số CM PT (2) có 1 nghiệm duy nhất . Bài 5 (A – 2003) Giải hệ : Xét hàm số nên hàm số đồng biến. Từ Thay vào (2) có nghiệm Bài 6 (Thử GL) Giải hệ phương trình . Xét hàm số nên hàm số đồng biến. Từ Thay vào (2) có nghiệm . vậy hệ có nghiệm . Bài 7 (Thi HSG tỉnh Hải Dương 2012) Từ điều kiện và từ phương trình (2) có , xét hàm số trên Hàm số đồng biến trên , ta có Với thay vào (2) giải được Bài 8 (A – 2012) Giải hệ phương trình Từ phương trình (2) nên nên xét trên Chỉ ra f(t) nghịch biến. Có Nghiệm Bài 9. (A – 2010) Giải hệ phương trình Lời giải. (1) với . ĐB trên . Vậy Thế vào pt (2) ta được Với . CM hàm g(x) nghịch biến. Ta có nghiệm duy nhất Bài 10.(Thi thử ĐT 2011) Tìm các giá trị của m để hệ phương trình sau có nghiệm Lời giải. - Điều kiện. (1) - Hàm số nghịch biến trên đoạn nên Thế vào pt (2) ta được Hệ có nghiệm Pt (3) có nghiệm Xét . Pt (3) có nghiệm Bài 11 (Thử ĐT 2012) Giải hệ : . TH1 : Xét thay vào hệ thây không thỏa mãn. TH2 : Xét , chia 2 vế của (1) cho ta được Xét hàm số nên hàm số đồng biến. Từ Thay vào (2) ta có PT . Vậy hệ có nghiệm Bài 15. Giải hệ phương trình Phân tích. Nếu thay vào phương trình thứ nhất thì ta sẽ được hđt Lời giải. Thay vào phương trình thứ nhất ta được (1) Xét hàm số có suy ra đồng biến trên . (1) thế vào pt thứ hai ta được . Vậy tập nghiệm của hệ là S = Bài 16. Giải hệ phương trình Lời giải. Trừ vế hai pt ta được với . đồng biến trên . Bởi vậy thế vào pt thứ nhất ta được Với . do và Suy ra đồng biến trên . Bởi vậy Vậy hệ phương trình có nghiệm duy nhất x = y = 0 Bài 17. Chứng minh hệ có đúng 2 nghiệm Lời giải. ĐK: . Do nên Trừ vế hai pt ta được Hay với . đồng biến trên . Bởi vậy thế vào pt thứ nhất ta được Với . Ta có Suy ra đồng biến trên . liên tục trên và có nên có nghiệm duy nhất và Từ BBT của ta suy ra pt có đúng 2 nghiệm . Vậy hệ phương trình đã cho có đúng 2 nghiệm dương. Bài 18 Giải hệ phương trình Lời giải. ĐK: (1) với ĐB trên và NB trên TH 1. hoặc thì Thế vào pt (2) ta được (không thỏa mãn) TH 2. hoặc ngược lại thì TH 3. thì hệ có nghiệm . Vậy hệ có nghiệm duy nhất Phương pháp sử dụng bất đẳng thức. Cơ sở phương pháp : Sử dụng BĐT để chứng minh hoặc ngược lại, dấu bằng xảy ra khi Một số BĐT quen thuộc. Bài 1 Giải hệ : HD : Từ (1) VTVP, dầu bằng khi thay vào PT (2) ta có : Ta có : Bài 2 (Thi thử ĐT 2013) Giải hệ : (2) . 0,25 (2) . 0,25 Xét hàm số Vì vậy trên hàm số f(t) đồng biến 0,25 TH 1. Kết hợp với . TH 2. hệ trở thành vô nghiệm Vậy hệ đã cho vô nghiệm. 0,25

Chuyên Đề: Phương Pháp Giải Phương Trình Vô Tỉ

CHUYÊN ĐỀ : PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH VÔ TỈ I. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 1. Bình phương 2 vế của phương trình Phương pháp Thông thường nếu ta gặp phương trình dạng : , ta thường bình phương 2 vế , điều đó đôi khi lại gặp khó khăn hãy giải ví dụ sau và ta sử dụng phép thế :ta được phương trình : Ví dụ Giải phương trình sau : Giải: Đk Bình phương 2 vế không âm của phương trình ta được:, để giải phương trình này dĩ nhiên là không khó nhưng hơi phức tạp một chút . Phương trình giải sẽ rất đơn giản nếu ta chuyển vế phương trình : Bình phương hai vế ta có : Thử lại x=1 thỏa Nhận xét : Nếu phương trình : Mà có : , thì ta biến đổi phương trình về dạng : sau đó bình phương ,giải phương trình hệ quả Bài 2. Giải phương trình sau : Giải: Điều kiện : Bình phương 2 vế phương trình ? Nếu chuyển vế thì chuyển như thế nào? Ta có nhận xét : , từ nhận xét này ta có lời giải như sau : Bình phương 2 vế ta được: Thử lại : l nghiệm Qua lời giải trên ta có nhận xét : Nếu phương trình : Mà có : thì ta biến đổi 2. Trục căn thức 2.1. Trục căn thức để xuất hiện nhân tử chung Phương pháp Một số phương trình vô tỉ ta có thể nhẩm được nghiệm như vậy phương trình luôn đưa về được dạng tích ta có thể giải phương trình hoặc chứng minh vô nghiệm , chú ý điều kiện của nghiệm của phương trình để ta có thể đánh gía vô nghiệm Ví dụ Bài 1 . Giải phương trình sau : Giải: Ta nhận thấy : v Ta có thể trục căn thức 2 vế : Dể dàng nhận thấy x=2 là nghiệm duy nhất của phương trình . Bài 2. Giải phương trình sau (OLYMPIC 30/4 đề nghị) : Giải: Để phương trình có nghiệm thì : Ta nhận thấy : x=2 là nghiệm của phương trình , như vậy phương trình có thể phân tích về dạng , để thực hiện được điều đó ta phải nhóm , tách như sau : Dễ dàng chứng minh được : Bài 3. Giải phương trình : Giải :Đk Nhận thấy x=3 là nghiệm của phương trình , nên ta biến đổi phương trình Ta chứng minh : Vậy pt có nghiệm duy nhất x=3 2.2. Đưa về “hệ tạm “ a) Phương pháp Nếu phương trình vô tỉ có dạng , mà : ở dây C có thể là hàng số ,có thể là biểu thức của . Ta có thể giải như sau : , khi đĩ ta có hệ: b) Ví dụ Bài 4. Giải phương trình sau : Giải: Ta thấy : không phải là nghiệm Xét Trục căn thức ta có : Vậy ta có hệ: Thử lại thỏa; vậy phương trình có 2 nghiệm : x=0 v x= Bài 5. Giải phương trình : Ta thấy : , như vậy không thỏa mãn điều kiện trên. Ta có thể chia cả hai vế cho x và đặt thì bài toán trở nên đơn giản hơn Bài tập đề nghị Giải các phương trình sau : (HSG Toàn Quốc 2002) (OLYMPIC 30/4-2007) 3. Phương trình biến đổi về tích Sử dụng đẳng thức Bài 1. Giải phương trình : Giải: Bi 2. Giải phương trình : Giải: + , không phải là nghiệm + , ta chia hai vế cho x: Bài 3. Giải phương trình: Giải: pt Bài 4. Giải phương trình : Giải: Đk: Chia cả hai vế cho : Dùng hằng đẳng thức Biến đổi phương trình về dạng : Bài 1. Giải phương trình : Giải: Đk: khi đó pt đ cho tương đương : Bài 2. Giải phương trình sau : Giải: Đk: phương trình tương đương : Bài 3. Giải phương trình sau : Giải : pttt II. PHƯƠNG PHÁP ĐẶT ẦN PHỤ 1. Phương pháp đặt ẩn phụ thông thường Đối với nhiều phương trình vô vô tỉ , để giải chúng ta có thể đặt và chú ý điều kiện của nếu phương trình ban đầu trở thành phương trình chứa một biến quan trọng hơn ta có thể giải được phương trình đó theo thì việc đặt phụ xem như “hoàn toàn ” .Nói chung những phương trình mà có thể đặt hoàn toàn thường là những phương trình dễ . Bài 1. Giải phương trình: Điều kiện: Nhận xét. Đặt thì phương trình có dạng: Thay vào tìm được Bài 2. Giải phương trình: Giải Điều kiện: Đặt thì . Thay vào ta có phương trình sau: Ta tìm được bốn nghiệm là: Do nên chỉ nhận các gái trị Từ đó tìm được các nghiệm của phương trình l: Cách khác: Ta có thể bình phương hai vế của phương trình với điều kiện Ta được: , từ đó ta tìm được nghiệm tương ứng. Đơn giản nhất là ta đặt : và đưa về hệ đối xứng (Xem phần dặt ẩn phụ đưa về hệ) Bài 3. Giải phương trình sau: Điều kiện: Đặt thì phương trình trở thnh: ( với Từ đó ta tìm được các giá trị của Bài 4. (THTT 3-2005) Giải phương trình sau : Giải: đk Đặt pttt Bài 5. Giải phương trình sau : Giải: Điều kiện: Chia cả hai vế cho x ta nhận được: Đặt , ta giải được. Bài 6. Giải phương trình : Giải: không phải là nghiệm , Chia cả hai vế cho x ta được: Đặt t=, Ta có : Bài tập đề nghị Giải các phương trình sau Nhận xét : đối với cách đặt ẩn phụ như trên chúng ta chỉ giải quyết được một lớp bài đơn giản, đôi khi phương trình đối với lại quá khó giải 2. Đặt ẩn phụ đưa về phương trình thuần nhất bậc 2 đối với 2 biến : Chúng ta đã biết cách giải phương trình: (1) bằng cách Xét phương trình trở thành : thử trực tiếp Các trường hợp sau cũng đưa về được (1) Chúng ta hãy thay các biểu thức A(x) , B(x) bởi các biểu thức vô tỉ thì sẽ nhận được phương trình vô tỉ theo dạng này . a) . Phương trình dạng : Như vậy phương trình có thể giải bằng phương pháp trên nếu Xuất phát từ đẳng thức : Hãy tạo ra những phương trình vô tỉ dạng trên ví dụ như: Để có một phương trình đẹp , chúng ta phải chọn hệ số a,b,c sao cho phương trình bậc hai giải “ nghiệm đẹp” Bài 1. Giải phương trình : Giải: Đặt phương trình trở thnh : Tìm được: Bài 2. Giải phương trình : Bài 3: giải phương trình sau : Giải: Đk: Nhận xt : Ta viết Đồng nhất thứ ta được Đặt , ta được: Ta được : Bài 4. Giải phương trình : Giải: Nhận xét : Đặt ta hy biến pt trn về phương trình thuần nhất bậc 3 đối với x và y : Pt có nghiệm : b).Phương trình dạng : Phương trình cho ở dạng này thường khó “phát hiện “ hơn dạng trên , nhưg nếu ta bình phương hai vế thì đưa về được dạng trên. Bài 1. giải phương trình : Giải: Ta đặt : khi đó phương trình trở thành : Bài 2.Giải phương trình sau : Giải Đk . Bình phương 2 vế ta có : Ta có thể đặt : khi đó ta có hệ : Do . Bài 3. giải phương trình : Giải: Đk . Chuyển vế bình phương ta được: Nhận xét : không tồn tại số để : vậy ta không thể đặt . Nhưng may mắn ta có : Ta viết lại phương trình: . Đến đây bài toán được giải quyết . Các em hãy tự sáng tạo cho mình những phương trình vô tỉ “đẹp “ theo cách trên 3. Phương pháp đặt ẩn phụ không hoàn toàn Từ những phương trình tích , Khai triển và rút gọn ta sẽ được những phương trình vô tỉ không tầm thường chút nào, độ khó của phương trình dạng này phụ thuộc vào phương trình tích mà ta xuất phát . Từ đó chúng ta mới đi tìm cách giải phương trình dạng này .Phương pháp giải được thể hiện qua các ví dụ sau . Bài 1. Giải phương trình : Giải: , ta có : Bài 2. Giải phương trình : Giải: Đặt : Khi đó phương trình trở thnh : Bây giờ ta thêm bớt , để được phương trình bậc 2 theo t có chẵn : Từ một phương trình đơn giản : , khai triển ra ta sẽ được pt sau Bài 3. Giải phương trình sau : Giải: Nhận xét : đặt , pttt: (1) Ta rt thay vo thì được pt: Nhưng không có sự may mắn để giải được phương trình theo t không có dạng bình phương . Muốn đạt được mục đích trên thì ta phải tách 3x theo Cụ thể như sau : thay vào pt (1) ta được: Bài 4. Giải phương trình: Giải . Bình phương 2 vế phương trình: Ta đặt : . Ta được: Ta phải tách làm sao cho có dạng chình phương . Nhận xét : Thông thường ta chỉ cần nhóm sao cho hết hệ số tự do thì sẽ đạt được mục đích 4. Đặt nhiều ẩn phụ đưa về tích Xuất phát từ một số hệ “đại số “ đẹp chúng ta có thể tạo ra được những phương trình vô tỉ mà khi giài nó chúng ta lại đặt nhiều ẩn phụ và tìm mối quan hệ giữa các ẩn phụ để đưa về hệ Xuất phát từ đẳng thức , Ta có Từ nhận xét này ta có thể tạo ra những phương trình vô tỉ có chứa căn bậc ba . Bài 1. Giải phương trình : Giải : , ta có : , giải hệ ta được: Bài 2. Giải phương trình sau : Giải . Ta đặt : , khi đó ta có : Bài 3. Giải các phương trình sau 5. Đặt ẩn phụ đưa về hệ: 5.1 Đặt ẩn phụ đưa về hệ thông thường Đặt và tìm mối quan hệ giữa và từ đó tìm được hệ theo u,v Bài 1. Giải phương trình: Đặt Khi đó phương trình chuyển về hệ phương trình sau: , giải hệ này ta tìm được . Tức là nghiệm của phương trình là Bài 2. Giải phương trình: Điều kiện: Đặt Ta đưa về hệ phương trình sau: Giải phương trình thứ 2: , từ đó tìm ra rồi thay vào tìm nghiệm của phương trình. Bài 3. Giải phương trình sau: Điều kiện: Đặt thì ta đưa về hệ phương trình sau: Vậy Bài 8. Giải phương trình: Giải Điều kiện: Đặt . Khi đó ta được hệ phương trình: 5.2 Xây dựng phương trình vô tỉ từ hệ đối xứng loại II Ta hãy đi tìm nguồn gốc của những bài toán giải phương trình bằng cách đưa về hệ đối xứng loại II Ta xét một hệ phương trình đối xứng loại II sau : việc giải hệ này thì đơn giản Bây giời ta sẽ biến hệ thành phương trình bằng cách đặt sao cho (2) luôn đúng , , khi đó ta có phương trình : Vậy để giải phương trình : ta đặt lại như trên và đưa về hệ Bằng cách tương tự xét hệ tổng quát dạng bậc 2 : , ta sẽ xây dựng được phương trình dạng sau : đặt , khi đó ta có phương trình : Tương tự cho bậc cao hơn : Tóm lại phương trình thường cho dưới dạng khia triển ta phải viết về dạng : v đặt để đưa về hệ , chú ý về dấu của ??? Việc chọn thông thường chúng ta chỉ cần viết dưới dạng : là chọn được. Giải phương trình: Điều kiện: Ta có phương trình được viết lại là: Đặt thì ta đưa về hệ sau: Trừ hai vế của phương trình ta được Giải ra ta tìm được nghiệm của phương trình là: Bài 6. Giải phương trình: Giải Điều kiện Ta biến đổi phương trình như sau: Đặt ta được hệ phương trình sau: Với Với Kết luận: Nghiệm của phương trình là Các em hãy xây dựng một sồ hệ dạng này ? Dạng hệ gần đối xứng Ta xt hệ sau : đây không phải là hệ đối xứng loại 2 nhưng chúng ta vẫn giải hệ được , và từ hệ này chúng ta xây dưng được bài toán phương trình sau : Bài 1 . Giải phương trình: Nhận xét : Nếu chúng ta nhóm như những phương trình trước : Đặt thì chúng ta không thu được hệ phương trình mà chúng ta có thể giải được. Để thu được hệ (1) ta đặt : , chọn sao cho hệ chúng ta có thể giải được , (đối xứng hoặc gần đối xứng ) Ta có hệ : Để giải hệ trên thì ta lấy (1) nhân với k cộng với (2): và mong muốn của chúng ta là có nghiệm Nên ta phải có : , ta chọn được ngay Ta có lời giải như sau : Điều kiện: , Đặt Ta có hệ phương trình sau: Với Với Kết luận: tập nghiệm của phương trình là: Chú ý : khi đã làm quen, chúng ta có thể tìm ngay bằng cách viết lại phương trình ta viết lại phương trình như sau: khi đó đặt , nếu đặt thì chúng ta không thu được hệ như mong muốn , ta thấy dấu của cùng dấu với dấu trước căn. Một cách tổng quát . Xét hệ: để hệ có nghiệm x = y thì : A-A’=B và m=m’, Nếu từ (2) tìm được hàm ngược thay vào (1) ta được phương trình Như vậy để xây dựng pt theo lối này ta cần xem xét để có hàm ngược và tìm được và hơn nữa hệ phải giải được. Một số phương trình được xây dựng từ hệ. Giải các phương trình sau Giải (3): Phương trình : Ta đặt : Các em hãy xây dựng những phương trình dạng này ! III. PHƯƠNG PHÁP ĐÁNH GIÁ 1. Dùng hằng đẳng thức : Từ những đánh giá bình phương : , ta xây dựng phương trình dạng Từ phương trình ta khai triển ra có phương trình : 2. Dùng bất đẳng thức Một số phương trình được tạo ra từ dấu bằng của bất đẳng thức: nếu dấu bằng ỏ (1) và (2) cùng dạt được tại thì là nghiệm của phương trình Ta có : Dấu bằng khi và chỉ khi và , dấu bằng khi và chỉ khi x=0. Vậy ta có phương trình: Đôi khi một số phương trình được tạo ra từ ý tưởng : khi đó : Nếu ta đoán trước được nghiệm thì việc dùng bất đẳng thức dễ dàng hơn, nhưng có nhiều bài nghiệm là vô tỉ việc đoán nghiệm không được, ta vẫn dùng bất đẳng thức để đánh giá được Bài 1. Giải phương trình (OLYMPIC 30/4 -2007): Giải: Đk Ta có : Dấu bằng Bài 2. Giải phương trình : Giải: Đk: Biến đổi pt ta có : Áp dụng bất đẳng thức Bunhiacopxki: Áp dụng bất đẳng thức Côsi: Dấu bằng Bài 3. giải phương trình: Ta chứng minh : và Bài tập đề nghị . Giải các phương trình sau 3. Xây dựng bài toán từ tính chất cực trị hình học 3.1 Dùng tọa độ của véc tơ Trong mặt phẳng tọa độ Oxy, Cho các véc tơ: khi đó ta có Dấu bằng xẩy ra khi và chỉ khi hai véc tơ cùng hướng , chú ý tỉ số phải dương , dấu bằng xẩy ra khi và chỉ khi 3.2 Sử dụng tính chất đặc biệt về tam giác Nếu tam giác là tam giác đều , thì với mọi điểm M trên mặt phẳng tam giác, ta luôn có với O là tâm của đường tròn .Dấu bằng xẩy ra khi và chỉ khi . Cho tam giác ABC có ba góc nhọn và điểm M tùy ý trong mặt mặt phẳng Thì MA+MB+MC nhỏ nhất khi điểm M nhìn các cạnh AB,BC,AC dưới cùng một góc Bài tập IV. PHƯƠNG PHÁP HÀM SỐ 1.Xây dựng phương trình vô tỉ dựa theo hàm đơn điệu Dựa vào kết quả : “ Nếu là hàm đơn điệu thì ” ta có thể xây dựng được những phương trình vô tỉ Xuất phát từ hàm đơn điệu : mọi ta xây dựng phương trình : , Rút gọn ta được phương trình Từ phương trình thì bài toán sẽ khó hơn Để gải hai bài toán trên chúng ta có thể làm như sau : Đặt khi đó ta có hệ : cộng hai phương trình ta được: = Hãy xây dựng những hàm đơn điệu và những bài toán vô tỉ theo dạng trên ? Bài 1. Giải phương trình : Giải: Xét hàm số , là hàm đồng biến trên R, ta có Bài 2. Giải phương trình Giải . Đặt , ta có hệ : Xét hàm số : , là hàm đơn điệu tăng. Từ phương trình Bài 3. Giải phương trình : V. PHƯƠNG PHÁP LƯỢNG GIÁC HÓA 1. Một số kiến thức cơ bản: Nếu thì có một số t với sao cho : và một số y với sao cho Nếu thì có một số t với sao cho : và một số y với sao cho Với mỗi số thực x có sao cho : Nếu : , là hai số thực thỏa: , thì có một số t với , sao cho Từ đó chúng ta có phương pháp giải toán : Nếu : thì đặt với hoặc với Nếu thì đặt , với hoặc , với Nếu : , là hai số thực thỏa: , thì đặt với Nếu , ta có thể đặt : , với , tương tự cho trường hợp khác X là số thực bất kỳ thi đặt : Tại sao lại phải đặt điều kiện cho t như vậy ? Chúng ta biết rằng khi đặt điều kiện thì phải đảm bảo với mỗi có duy nhất một , và điều kiện trên để đảm bào điều này . (xem lại vòng tròn lượng giác ) 2. Xây dựng phương trình vô tỉ bằng phương pháp lượng giác như thế nào ? Từ công phương trình lượng giác đơn giản: , ta có thể tạo ra được phương trình vô tỉ Chú ý : ta có phương trình vô tỉ: (1) Nếu thay bằng ta lại có phương trình : (2) Nếu thay x trong phương trình (1) bởi : (x-1) ta sẽ có phương trình vố tỉ khó: (3) Việc giải phương trình (2) và (3) không đơn giản chút nào ? Tương tự như vậy từ công thức sin 3x, sin 4x,.hãy xây dựng những phương trình vô tỉ theo kiểu lượng giác . 3. Một số ví dụ Bài 1. Giải phương trình sau : Giải: Điều kiện : Với : thì (ptvn) ta đặt : . Khi đó phương trình trở thành: vậy phương trình có nghiệm : Bài 2. Giải các phương trình sau : DH: Đs: HD: chứng minh vô nghiệm Bài 3 . Giải phương trình sau: Giải: Lập phương 2 vế ta được: Xét : , đặt . Khi đó ta được mà phương trình bậc 3 có tối đa 3 nghiệm vậy đó cũng chính là tập nghiệm của phương trình. Bài 4. .Giải phương trình Giải: đk: , ta có thể đặt Khi đó ptt: Phương trình có nghiệm : Bài 5 .Giải phương trình : Giải: đk Ta có thể đặt : Khi đó pttt. Kết hợp với điều kiện ta có nghiệm Bài tập tổng hợp Giải các phương trình sau (HSG Toàn Quốc 2002) (OLYMPIC 30/4-2007) CHUYÊN ĐỀ: PHƯƠNG TRÌNH VÔ TỶ PHƯƠNG PHÁP BIỂN ĐỔI TƯƠNG ĐƯƠNG Dạng 1 : Phương trình Lưu ý: Điều kiện (*) được chọn tuỳ thuôc vào độ phức tạp của hay Dạng 2: Phương trình Dạng 3: Phương trình (chuyển về dạng 2) và ta sử dụng phép thế :ta được phương trình : Bài 1: Giải phương trình: a) b) c) d) e) f) g) h) i) Bài 2: Tìm m để phương trình sau có nghiệm: Bài 3: Cho phương trình: Giải phương trình khi m=1 Tìm m để phương trình có nghiệm. Bài 4: Cho phương trình: Giải phương trình khi m=3 Với giá trị nào của m thì phương trình có nghiệm. PHƯƠNG PHÁP ĐẶT ẨN PHỤ Phương pháp đặt ẩn phụ thông thường. Nếu bài toán có chứa và khi đó đặt (với điều kiện tối thiểu là . đối với các phương trình có chứa tham số thì nhất thiết phải tìm điều kiện đúng cho ẩn phụ). Nếu bài toán có chứa , và (với k là hằng số) khi đó có thể đặt : , khi đó Nếu bài toán có chứa và khi đó có thể đặt: suy ra Nếu bài toán có chứa thì đặt với hoặc với Nếu bài toán có chứa thì đặt với hoặc với Nếu bài toán có chứa ta có thể đặt với Bài 1: Giải phương trình: a) b) c) d) e) f) g) h) i) Bài 2: Giải phương trình: a) b) c) d) e) f) Bài 3: Cho phương trình: Giải phương trình với m=3 Tìm m để phương trình có nghiệm Tìm m để phương trình có nghiệm duy nhất Bài 4: Cho phương trình: Giải phương trình với Tìm m để phương trình có nghiệm. Bài 5: Cho phương trình: Giải phương trình với m = 9 Tìm m để phương trình có nghiệm. 2. Phương pháp đặt ẩn phụ không hoàn toàn Là việc sử dụng một ẩn phụ chuyển phương trình ban đầu thành một phương trình với một ẩn phụ nhưng các hệ số vẫn còn chứa x. Từ những phương trình tích , Khai triển và rút gọn ta sẽ được những phương trình vô tỉ không tầm thường chút nào, độ khó của phương trình dạng này phụ thuộc vào phương trình tích mà ta xuất phát. Từ đó chúng ta mới đi tìm cách giải phương trình dạng này .Phương pháp giải được thể hiện qua các ví dụ sau . Bài 1. Giải phương trình : Giải: , ta có : Bài 2. Giải phương trình : Giải: Đặt : Khi đó phương trình trở thnh : Bây giờ ta thêm bớt , để được phương trình bậc 2 theo t có chẵn Từ một phương trình đơn giản : , khai triển ra ta sẽ được pt sau Bài 3. Giải phương trình sau : Giải: Nhận xét : đặt , pttt: (1) Ta rt thay vo thì được pt: Nhưng không có sự may mắn để giải được phương trình theo t không có dạng bình phương . Muốn đạt được mục đích trên thì ta phải tách 3x theo Cụ thể như sau : thay vào pt (1) ta được: Bài 4. Giải phương trình: Giải . Bình phương 2 vế phương trình: Ta đặt : . Ta được: Ta phải tách làm sao cho có dạng chình phương . Nhận xét : Thông thường ta chỉ cần nhóm sao cho hết hệ số tự do thì sẽ đạt được mục đích. Bài tập: Giải các phương trình sau: a) b) c) d) 3. Phương pháp đặt ẩn phụ chuyển về hệ. a) Dạng thông thường: Đặt và tìm mối quan hệ giữa và từ đó tìm được hệ theo u,v. Chẳng hạn đối với phương trình: ta có thể đặt: từ đó suy ra . Khi đó ta có hệ Bài tập: Giải các phương trình sau: a) b) c) b) Dạng phương trình chứa căn bậc hai và lũy thừa bậc hai: với Cách giải: Đặt: khi đó phương trình được chuyển thành hệ: Nhận xét: Dể sử dụng được phương pháp trên cần phải khéo léo biến đổi phương trình ban đầu về dạng thỏa mãn điều kiện trên để đặt ẩn phụ.Việc chọn thông thường chúng ta chỉ cần viết dưới dạng : là chọn được. c) Dạng phương trình chứa căn bậc ba và lũy thừa bậc ba. với Cách giải: Đặt khi đó phương trình được chuyển thành hệ: Bài tập: Giải các phương trình sau: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) PHƯƠNG PHÁP HÀM SỐ Sử dụng các tính chất của hàm số để giải phương trình là dạng toán khá quen thuộc. Ta có 3 hướng áp dụng sau đây: Hướng 1: Thực hiện theo các bước: Bước 1: Chuyển phương trình về dạng: Bước 2: Xét hàm số Bước 3: Nhận xét: Với do đó là nghiệm Với do đó phương trình vô nghiệm Với do đó phương trình vô nghiệm Vậy là nghiệm duy nhất của phương trình Hướng 2: thực hiện theo các bước Bước 1: Chuyển phương trình về dạng: Bước 2: Dùng lập luận khẳng định rằng và g(x) có những tính chất trái ngược nhau và xác định sao cho Bước 3: Vậy là nghiệm duy nhất của phương trình. Hướng 3: Thực hiện theo các bước: Bước 1: Chuyển phương trình về dạng Bước 2: Xét hàm số , dùng lập luận khẳng định hàm số đơn điệu Bước 3: Khi đó Ví dụ: Giải phương trình : Giải: pt Xét hàm số , là hàm đồng biến trên R, ta có Bài tập: Giải phương trình: a) b) c) d) e) f)

Giải Hệ Phương Trình Bằng Phương Pháp Cộng Đại Số

Giải các hệ phương trình sau bằng phương pháp cộng đại số :

Giải hệ phương trình sau bằng phương pháp cộng đại số :

Vậy hệ phương trình có nghiệm (0 ; -1).

Với giá trị nào của m, n thì đồ thị hàm số y = 2mx – n + 1 đi qua hai điểm M(-l ; 3) và N(2 ; -1) ?

Đồ thị hàm số y = 2mx – n + 1 đi qua hai điểm M(-1 ; 3) và N(2 ; -1) khi và chỉ khi

B. Bài tập cơ bản

Giải các hệ phương trình sau bằng phương pháp cộng đại số :

Giải các hệ phương trình sau bằng phương pháp cộng đại số :

Viết phương trình đường thẳng đi qua hai điểm M( -1; -1/2) và N(1; -3).

Trong các câu 4.4; 4.5; 4.6 hãy khoanh tròn vào chữ cái trước phương án đúng

(A) 6 (B) 3 (C) -3 (D) -6

Với giá trị nào của m, n thì đồ thị hàm số y = mx – n đi qua hai điểm P(0 ; 1) và Q(2 ; -3) ?

(A) m = -2 ; n = 1 (B) m = -1 ; n = -1

(C) m = 2 ; n = -1 (D) m = -2 ; n = -1.

C. Bài tập bổ sung

Tìm giá trị nhỏ nhất của biểu thức :

P = 5(2 – 2xy + ) + 2(y – 3x + 2).

Cho phương trình + a + bx + 1 = 0 (với x là ẩn số).

a) Tìm các số hữu tỉ a, b thoả mãn x = – 2 là nghiệm của phương trình.

b) Với các giá trị a, b đã tìm được ở câu a), hãy tìm các nghiệm còn lại của phương trình.

Tìm m để hệ phương trình sau có nghiệm :

Chuyên Đề Hệ Phương Trình Ôn Thi Vào Lớp 10

Ôn thi vào lớp 10 môn Toán

Chuyên đề Hệ phương trình ôn thi vào lớp 10

Hệ phương trình bậc nhất hai ẩn số

A. Kiến thức cần nhớ về hệ phương trình bậc nhất hai ẩn số

1. Định nghĩa về hệ phương trình bậc nhất hai ẩn số

+ Hệ phương trình bậc nhất hai ẩn có dạng

Trong đó a, b, a’ và b’ không đồng thời bằng 0

2. Biện luận số nghiệm của phương trình bậc nhất hai ẩn số

Với a’, b’, c’ khác 0 thì:

+ Hệ (I) có nghiệm duy nhất khi

+ Hệ (I) vô nghiệm khi

+ Hệ (I) có vô số nghiệm khi

B. Một số dạng bài tập hệ phương trình bậc nhất hai ẩn số

I. Dạng 1: Giải hệ phương trình có bản và đưa về dạng cơ bản a, Phương pháp thế

+ Dùng quy tắc thế biến đổi hệ phương trình đã cho thành một hệ mới trong đó có phương trình một ẩn

+ Giải phương trình một ẩn này rồi duy ra nghiệm của hệ

b, Phương pháp cộng đại số

+ Nhân hai vế của mỗi phương trình với một thừa số phụ sao cho giá trị tuyệt đối của hệ số của một ẩn nào đó trong hai phương trình bằng nhau

+ Dùng quy tắc cộng đại số để được một hệ mới trong đó có một phương trình một ẩn

+ Giải phương trình một ẩn này rồi suy ra nghiệm của hệ

c, Một số ví dụ về giải hệ phương trình bằng phương pháp thế và phương pháp cộng đại số

Bài 1: Giải hệ phương trình bằng phương pháp thế

Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y) = (2;1)

Bài 2: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y) = (2;1)

II. Dạng 2. Giải các hệ phương trình sau bằng cách đặt ẩn số phụ a, Cách giải hệ phương trình bằng cách đặt ẩn phụ

+ Bước 1: Đặt điều kiện để hệ có nghĩa

+ Bước 2: Đặt ẩn phụ và điều kiện của ẩn phụ

+ Bước 3: Giải hệ theo các ẩn phụ đã đặt (sử dụng phương pháp thế hoặc phương pháp cộng đại số)

+ Bước 4: Trở lại ẩn ban đầu để tìm nghiệm của hệ

b, Ví dụ về bài toán giải hệ phương trình bằng cách đặt ẩn phụ

Giải hệ phương trình:

Điều kiện

Đặt

Hệ phương trình đã cho trở thành:

Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y) = (1;1)

III. Dạng 3. Giải và biện luận hệ phương trình a, Phương pháp giải:

+ Từ một phương trình của hệ tìm y theo x rồi thế vào phương trình thứ hai để được phương trình bậc nhất đối với x

+ Giả sử phương trình bậc nhất đối với x có dạng: ax = b (1)

+ Biện luận phương trình (1) ta sẽ có sự biện luận của hệ

– Nếu a = 0: (1) trở thành 0x = b

Nếu b = 0 thì hệ có vô số nghiệm

Nếu b

– Nếu a

b, Ví dụ về giải và biện luận hệ phương trình:

Giải và biện luận hệ phương trình:

Từ (1)

4x – m(mx – 2m) = m + 6 (m 2 – 4)x = (2m + 3)(m – 2) (3)

+ Nếu m 2 – 4

Khi đó y = –

+ Nếu m = 2 thì (3) thỏa mãn với mọi x, khi đó y = mx -2m = 2x – 4

Hệ có vô số nghiệm (x, 2x-4) với mọi x thuộc R

+ Nếu m = -2 thì (3) trở thành 0x = 4 . Hệ vô nghiệm

IV. Dạng 4: Xác định giá trị của tham số để hệ có nghiệm thỏa mãn điều kiện cho trước a, Phương pháp giải:

+ Giải hệ phương trình theo tham số

+ Viết x, y của hệ về dạng: n +

+ Tìm m nguyên để f(m) là ước của k

b, Một số ví dụ về bài toán

Tìm m nguyên để hệ có nghiệm duy nhất là nghiệm nguyên:

để hệ có nghiệm duy nhất thì m 2 – 4

Vậy với m

Để x, y là những số nguyên thì m + 2 thuộc Ư(3) =

Vậy

Để luyện thêm các dạng bài tập về hệ phương trình bậc nhất hai ẩn, mời các bạn học sinh tải tài liệu về!

Bạn đang đọc nội dung bài viết Chuyên Đề Một Số Phương Pháp Giải Hệ Phương Trình trên website Asianhubjobs.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!