Đề Xuất 1/2023 # Chuyên Đề “Phương Trình Nghiệm Nguyên” # Top 6 Like | Asianhubjobs.com

Đề Xuất 1/2023 # Chuyên Đề “Phương Trình Nghiệm Nguyên” # Top 6 Like

Cập nhật nội dung chi tiết về Chuyên Đề “Phương Trình Nghiệm Nguyên” mới nhất trên website Asianhubjobs.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất.

www.vnmath.com www.vnmath.com 1 Giáo viên hướng dẫn: thầy ĐỖ KIM SƠN www.VNMATH.com www.vnmath.com www.vnmath.com 2 Lời nói đầu Trang Phần 1: Các phương pháp giải phương trình nghiệm nguyên ........................................4 Phương pháp 1:Xét số dư của từng vế. ................................................................................5 Phương pháp 2: Đưa về dạng tổng.......................................................................................5 Phương pháp 3: Dùng bất đẳng thức ...................................................................................6 Phương pháp 4: Dùng tính chia hết, tính đồng dư . .............................................................8 Phương pháp 5: Dùng tính chất của số chính phương .......................................................11 Phương pháp 6: Lùi vô hạn, nguyên tắc cực hạn...............................................................14 Phương pháp 7: Xét chữ số tận cùng .................................................................................15 Phương pháp 8: Tìm nghiệm riêng ...................................................................................15 Phương pháp 9: Hạ bậc......................................................................................................16 Phần 2: Các dạng phương trình có nghiệm nguyên .......................................................18 Dạng 1: Phương trình bậc nhất hai ẩn ...............................................................................19 Dạng 2: Phương trình bậc hai có hai ẩn.............................................................................19 Dạng 3: Phương trình bậc ba trở lên có hai ẩn. .................................................................21 Dạng 4: Phương trình đa thức có ba ẩn trở lên ..................................................................23 Dạng 5: Phương trình dạng phân thức ...............................................................................24 Dạng 6: Phương trình dạng mũ ..........................................................................................25 Dạng 7: Hệ phương trình vô tỉ ...........................................................................................26 Dạng 8: Hệ phương trình với nghiệm nguyên ...................................................................28 Dạng 9: Hệ phương trình Pytago .......................................................................................28 Dạng 10: Phương trình Pel.................................................................................................30 Dạng 11: Điều kiện để phương trình có nghiệm nguyên. ..................................................32 Phần 3: Bài tập áp dụng ...................................................................................................33 Phụ lục ...............................................................................................................................48 Lời cảm ơn .........................................................................................................................52 www.VNMATH.com www.vnmath.com www.vnmath.com 3 Phương trình và bài toán với nghiệm nguyên là một đề tài lý thú của Số học và Đại số, từ những bài toán về tính mỗi loại trâu Trăm trâu trăm cỏ đến các chuyên gia toán học lớn với các bài toán như định lý lớn Fecma. Được nghiên cứu từ thời Điôphăng thế kỉ thứ III, phương trình nghiệm nguyên vẫn còn là đối tượng nghiên cứu của toán học. Phương trình nghiệm nguyên vô cùng đa dạng, vì thế nó thường không có quy tắc giải tổng quát. Mỗi bài toán, với số liệu riêng của nó, đòi hỏi một cách giải riêng phù hợp. Thời gian qua, nhờ sự hướng dẫn của giáo viên bộ môn, chúng em xin giới thiệu chuyên đề “Phương trình nghiệm nguyên”. Chuyên đề này là sự tập hợp các phương pháp cũng như các dạng phương trình khác nhau của phương trình nghiệm nguyên, do chúng em sưu tầm từ các nguồn kiến thức khác nhau. Chúng em mong muốn quyển chuyên đề sẽ giúp ích một phần cho việc tìm hiểu của các bạn học sinh về vấn đề nêu trên. Quyển chuyên đề này gồm có 3 phần chính. Đầu tiên chúng em xin giới thiệu các phương pháp thường dùng để giải phương trình với nghiệm nguyên, sau đó là việc tìm hiểu cách giải các dạng phương trình khác nhau của nó và cuối cùng là phần bài tập. Trong quá trình biên soạn, sưu tầm và tập hợp các phương pháp cùng những ví dụ, bài tập, tuy chúng em đã cố gắng rất nhiều nhưng thiếu sót là điều khó tránh khỏi. Vì vậy, chúng em mong thầy và các bạn khi xem xong quyển chuyên đề này hãy đóng góp ý kiến để giúp những chuyên đề sau được hoàn thành tốt hơn. Xin chân thành cảm ơn! Nhóm biên tập www.VNMATH.com www.vnmath.com www.vnmath.com 4 www.VNMATH.com www.vnmath.com www.vnmath.com 5 1) PHƯƠNG PHÁP XÉT SỐ DƯ CỦA TỪNG VẾ Ví dụ 1: Chứng minh các phương trình sau không có nghiệm nguyên: a) 2 2 1998x y  b) 2 2 1999x y  Giải: a) Dễ chứng minh 2 2,x y chia cho 4 chỉ có số dư 0 hoặc 1 nên 2 2x y chia cho 4 có số dư 0, 1, 3. Còn vế phải 1998 chia cho 4 dư 2 Vậy phương trình đã cho không có nghiệm nguyên. b) 2 2,x y chia cho 4 có số dư 0, 1 nên 2 2x y chia cho 4 có các số dư 0, 1, 2. Còn vế phải 1999 chia cho 4 dư 3. Vậy phương trình không có nghiệm nguyên. Ví dụ 2: Tìm các nghiệm nguyên của phương trình 29 2x y y   Giải Biến đổi phương trình: 9 2 ( 1)x y y   Ta thấy vế trái của phương trình là số chia hết cho 3 dư 2 nên ( 1)y y  chia cho 3 dư 2. Chỉ có thể: 3 1y k  , 1 3 2y k   với k nguyên Khi đó: 9 2 (3 1)(3 2)x k k    9 9 ( 1)x k k   ( 1)x k k   Thử lại, ( 1)x k k  , 3 1y k  thỏa mãn phương trình đã cho. Đáp số ( 1)3 1 x k k y k     với k là số nguyên tùy ý 2) PHƯƠNG PHÁP ĐƯA VỀ DẠNG TỔNG Biến đổi phương trình về dạng: vế trái là tổng của các bình phương, vế phải là tổng của các số chính phương. Ví dụ 3: Tìm các nghiệm nguyên của phương trình: 2 2 8x y x y    (1) Giải: (1) 2 24 4 4 4 32x y x y     2 2 2 2 2 2 (4 4 1) (4 4 1) 34 | 2 1 | | 2 1 | 3 5 x x y y x y              Bằng phương pháp thử chọn ta thấy 34 chì có duy nhất một dạng phân tích thành tồng của hai số chính phương 2 23 ,5 . Do đó phương trình thỏa mãn chỉ trong hai khả năng: | 2 1 | 3 | 2 1 | 5 x y     hoặc | 2 1 | 5 | 2 1 | 3 x y     www.VNMATH.com www.vnmath.com www.vnmath.com 6 Giải các hệ trên phương trình (1) có bốn nghiệm nguyên là: (2 ; 3), (3 ; 2), ( 1 ;  2), ( 2 ;  1) 3) PHƯƠNG PHÁP DÙNG BẤT ĐẲNG THỨC Trong khi giải các phương trình nghiệm nguyên rất cần đánh giá các miền giá trị của các biến, nếu số giá trị mà biến số có thể nhận không nhiều có thể dùng phương pháp thử trực tiếp để kiểm tra. Để đánh giá được miền giá trị của biến số cần vận dụng linh hoạt các tính chất chia hết, đồng dư, bất đẳng thức a) Phương pháp sắp thứ tự các ẩn Ví dụ 4: Tìm ba số nguyên dương sao cho tổng của chúng bằng tích của chúng Giải: Cách 1: Gọi các số nguyên dương phải tìm là x, y, z. Ta có: . .x y z x y z   (1) Chú ý rằng các ẩn x, y, z có vai trò bình đẳng trong phương trình nên có thể sắp xếp thứ tự giá trị của các ẩn, chẳng hạn: 1 x y z   Do đó: 3xyz x y z z    Chia hai vế của bất đảng thức 3xyz z cho số dương z ta được: 3xy  Do đó {1;2;3}xy Với xy = 1, ta có x = 1, y = 1. Thay vào (1) được 2 + z = z (loại) Với xy = 2, ta có x = 1, y = 2. Thay vào (1) được z = 3 Với xy = 3, ta có x = 1, y = 3. Thay vào (1) được z = 2 loại vì y z Vậy ba số phải tìm là 1; 2; 3. Cách 2: Chia hai vế của (1) cho 0xyz  được: 1 1 1 1 yz xz xy    Giả sử 1x y z   ta có 2 2 2 2 1 1 1 1 1 1 31 yz xz xy z z z z        Suy ra 2 31 z  do đó 2 3z  nên z = 1. Thay z = 1 vào (1): 1x y xy   1xy x y    ( 1) ( 1) 2x y y     ( 1)( 1) 2x y    Ta có 1 1 0x y    nên Suy ra Ba số phải tìm là 1; 2; 3 Ví dụ 5: Tìm nghiệm nguyên dương của phương trình sau : 5(x + y + z + t) + 10 = 2xyzt . x – 1 2 y – 1 1 x 3 y 2 www.VNMATH.com www.vnmath.com www.vnmath.com 7 Giải Vì vai trò của x, y, z, t như nhau nên có thể giả thiết x ≥ y ≥ z ≥ t. Khi đó : 2xyzt = 5(x + y + z + t) +10 ≤ 20x + 10 315 15 2yzt t t      Với t = 1 ta có : 2xyz = 5(x + y + z) +15 ≤ 15x + 15 22 30 2 30 3yz z z      Nếu z = 1 thì 2xy = 5(x + y) + 20 hay 4xy = 10(x + y) + 40 hay (2x – 5)(2y – 5) = 65 . Dễ thấy rằng phương trình này có nghiệm là (x = 35; y = 3) và (x = 9; y = 5). Giải tương tự cho các trường còn lại và trường hợp t = 2. Cuối cùng ta tìm được nghiệm nguyên dương của phương trình đã cho là (x; y; z; t) = (35; 3; 1; 1); (9; 5; 1; 1) và các hoán vị của các bộ số này. b) Phương pháp xét từng khoảng giá trị của ẩn Ví dụ 6: Tìm các nghiệm nguyên dương của phương trình: 1 1 1 3x y   Giải: Do vai trò bình đẳng của x và y, giả sử x y . Dùng bất đẳng thức để giới hạn khoảng giá trị của số nhỏ hơn (là y). Hiển nhiên ta có 1 1 3y  nên 3y  (1) Mặt khác do 1x y  nên 1 1 x y  . Do đó: 1 1 1 1 1 2 3 x y y y y      nên 6y  (2) Ta xác định được khoảng giá tri của y là 4 6y  Với y = 4 ta được: 1 1 1 1 3 4 12x    nên x = 12 Với y = 5 ta được: 1 1 1 2 3 5 15x    loại vì x không là số nguyên Với y = 6 ta được: 1 1 1 1 3 6 6x    nên x = 6 Các nghiệm của phương trình là: (4 ; 12), (12 ; 4), (6 ; 6) c) Phương pháp chỉ ra nghiệm nguyên Ví dụ 7: Tìm các số tự nhiên x sao cho: 2 3 5x x x  Giải: Viết phương trình dưới dạng: www.VNMATH.com www.vnmath.com www.vnmath.com 8 2 3 1 5 5 x x           (1) Với x = 0 thì vế trái của (1) bằng 2, loại. Với x = 1 thì vế trái của (1) bằng 1, đúng Với 2x  thì 2 2 3 3, 5 5 5 5 x x           nên: 2 3 2 3 1 5 5 5 5 x x             loại Nghiệm duy nhất của phương trình là x = 1 d) Sử dụng diều kiện 0 để phương trình bậc hai có nghiệm Ví dụ 8: Tìm các nghiệm nguyên của phương trình: 2 2x y xy x y    (1) Giải Viết (1) thành phương trình bậc hai đối với x: 2 2( 1) ( ) 0x y x y y     (2) Điều kiện cần để (2) có nghiệm là 0 2 2 2( 1) 4( ) 3 6 1 0y y y y y         23 6 1 0y y    23( 1) 4y   Do đó 2( 1) 1y   suy ra: y – 1 -1 0 1 y 0 1 2 Với y = 0 thay vào (2) được 2 1 20 0; 1x x x x     Với y = 1 thay vào (2) được 2 3 42 0 0; 2x x x x     Với y = 2 thay vào (2) được 2 5 63 2 0 1; 2x x x x      Thử lại, các giá trị trên nghiệm đúng với phương trình (1) Đáp số: (0 ; 0), (1 ; 0), (0 ; 1), (2 ; 1), (1 ; 2), (2 ; 2) 4) PHƯƠNG PHÁP DÙNG TÍNH CHIA HẾT, TÍNH ĐỒNG DƯ Khi giải các phương trình nghiệm nguyên cần vận dụng linh hoạt các tính chất về chia hết, đồng dư, tính chẵn lẻ, để tìm ra điểm đặc biệt của các biến số cũng như các biểu thức chứa trong phương trình, từ đó đưa phương trình về các dạng mà ta đã biết cách giải hoặc đưa về những phương trình đơn giản hơn.. a) Phương pháp phát hiện tính chia hết của ẩn: Ví dụ 9: Giải phương trính với nghiệm nguyên: 3x + 17y = 159 Giải: Giả sử x, y là các số nguyên thỏa mãn phương trình. Ta thấy 159 và 2x đều chia hết cho 3 nên 17y3 do đó y3 ( vì 17 và 3 nguyên tố cùng nhau) Đặt y = 3t ( t ). Thay vào phương trình ta được: www.VNMATH.com www.vnmath.com www.vnmath.com 9 3x + 17.3t = 159  x + 17t = 53 Do đó: 53 173 x t y t    ( t ) Đảo lại, thay các biểu thức của x và y vào phương trình ta được nghiệm đúng. Vậy phương trình (1) có vô số nghiệm nguyênđược xác định bằng công thức: 53 17 3 x t y t    (t là số nguyên tùy ý) Ví dụ 10: Chứng minh rằng phương trình : 2 25 27x y  (1) không có nghiệm là số nguyên. Giải Một số nguyên x bất kì chỉ có thể biểu diễn dưới dạng x = 5k hoặc x = 5k ± 1 hoặc x = 5k ± 2 trong đó k   Nếu x = 5k thì : 2 2 2 2(1) (5 ) 5 27 5(5 ) 27k y k y      Điều này vô lí, vì vế trái chia hết cho 5 với mọi k và y là số nguyên, còn vế phải không chia hết cho 5  Nếu x = 5k ± 1 thì : 2 2(1) (5 1) 5 27k y    2 225 10 1 5 27k k y     2 25(5 4 ) 23k k y    Điều này cũng vô lí, vế trái chia hết cho 5 với mọi k và y là số nguyên, còn vế phải không chia hết cho 5  Nếu x = 5k ± 2 thì : 2 2(1) (5 2) 5 27k y    2 225 20 4 5 27k k y     2 25(5 4 ) 23k k y    Lập luận tương tự như trên, điều này cũng vô lí Vậy phương trình đã cho không có nghiệm là số nguyên Ví dụ 11: Tìm nghiệm nguyên dương của phương trình sau : 19x2 + 28y2 = 729. Giải Cách 1. Viết phương trình đã cho dưới dạng (18x2 + 27y2) + (x2 + y2) = 729 (1) Từ (1) suy ra x2 + y2 chia hết 3, do đó x và y đều chia hết cho 3. Đặt x = 3u, y = 3v ( , )u v Thay vào phương trình đã cho ta được : 19u2 + 28v2 = 81. (2) Từ (2) lập luận tương tự trên ta suy ra u = 3s, v = 3t ( , )s t Thay vào (2) ta có 19s2 + 28t2 = 9. (3) Từ (3) suy ra s, t không đồng thời bằng 0, do đó www.VNMATH.com www.vnmath.com www.vnmath.com 10 Vậy (3) vô nghiệm và do đó phương trình đã cho cũng vô nghiệm. Cách 2. Giả sử phương trình có nghiệm Từ phương trình đã cho ta suy ra x2 ≡ -1 (mod 4), điều này không xảy ra với mọi số nguyên x. Vậy phương trình đã cho vô nghiệm b) Phương pháp đưa về phương trình ước số Ví dụ 12: Tìm các nghiệm nguyên của phương trình: xy – x – y = 2 Giải: Biến đổi phương trình thành: x(y – 1) – y = 2 x(y – 1) – (y – 1) = 3  (y – 1)(x – 1) = 3 Ta gọi phương trình trên là phương trình ước số: vế trái là 1 tích các thừa số nguyên, vế phái là một hằng số. Ta có x và y là các số nguyên nên x – 1 và y – 1 là các số nguyên và là ước của 23. Do vai trò bình đẳng của x và y trong phương trình nên có thể giả sử xy, khi đó x – 1y – 1 Ta có: Do đó: x 4 0 y 2 -2 Nghiệm nguyên của phương trình: (4 ; 2), (2 ; 4), (0 ; -2), (-2 ; 0) Ví dụ 13: Tìm nghiệm nguyên của phương trình : x + xy + y = 9. Giải Phương trình đã cho có thể đưa về dạng : (x + 1)(y + 1) = 10. (1) Từ (1) ta suy ra (x + 1) là ước của 10 hay ( 1) { 1; 2; 5; 10}x       Từ đó ta tìm được các nghiệm của phương trình là : (1, 4), (4, 1), (-3, -6), (-6, -3), (0, 9), (9, 0), (-2, -11), (-11, -2). Ví dụ 14: Xác định tất cả các cặp nguyên dương (x; n) thỏa mãn phương trình sau 3 3367 2nx   Giải Để sử dụng được hằng đẳng thức a3 – b3 = (a – b)(a2 + ab + b2) ta chứng minh n chia hết cho 3 . Từ phương trình đã cho ta suy ra 3 2nx  (mod 7). x – 1 3 -1 y – 1 1 -3 www.VNMATH.com www.vnmath.com www.vnmath.com 11 Nếu n không chia hết cho 3 thì 2n khi chia cho 7 chỉ có thể cho số dư là 2, 4 hoặc 7, trong khi đó 3x khi chia cho 7 chỉ có thể cho số dư là 0, 1, hoặc 6 nên không thề có đồng dư thức 3 2nx  (mod 7). Vậy n = 3m với m là một số nguyên dương nào đó. Thay vào phương trình đã cho ta được 3 33367 2 mx   2(2 )[(2 ) 3 .2 ] 3367m mx m x x    (1) Từ (1) ta suy ra 2m x là ước của 3367 Hơn nữa, 3 3 3(2 ) 2 3367m mx x    nên (2 ) {1;7;13}m x  Xét 2 1m x  , thay vào (1) ta suy ra 2m(2m – 1) = 2 × 561, vô nghiệm. Xét 2 3m x  , thay vào (1) ta suy ra 2m(2m – 13) = 2 × 15, vô nghiệm. Xét 2 7m x  , thay vào (1) ta suy ra 2m(2m – 7) = 24 × 32. Từ đó ta có m = 4; n = 3m = 12, và x = 9. Vậy (x; n) = (9; 12) c) Phương pháp tách ra các giá trị nguyên: Ví dụ 15: Giải phương trình ở ví dụ 2 bằng cách khác Giải: Biểu thị x theo y: x(y – 1) = y + 2 Ta thấy y 1 ( vì nếu y = 1 thì ta có 0x = 3 vô nghiệm) Do đó: 2 1 3 31 1 1 1 y yx y y y         Do x là số nguyên nên 3 1y  là số nguyên, do đó y – 1 là ước của 3. Lần lượt cho y – 1 bằng -1, 1, -3, 3 ta được các đáp số như ở ví dụ 2. 5) PHƯƠNG PHÁP DÙNG TÍNH CHẤT CỦA SỐ CHÍNH PHƯƠNG a) Sử dụng tính chất về chia hết của số chính phương Ví dụ 16: Tìm các số nguyên x để 9x + 5 là tích của hai số nguyên liên tiếp Giải: Cách 1: Giải sử 9x + 5 = n(n + 1) với n nguyên thì: 36x + 20 = 24 4n n 236 21 4 4 1x n n     23(12 7) (2 1)x n    Số chính phương 2(2 1)n  chia hết cho 3 nên cũng chia hết cho 9. Ta lại có 12x + 7 không chia hết cho 3 nên 3(12x + 7) không chi hết cho 9. Mâu thuẫn trên chứng tỏ không tồn tại số nguyên x nào để 9x + 5 = n(n + 1). Cách 2: Giả sử 9x + 5 = n(n + 1) với n nguyên Biến đổi 2 9 5 0n n x    www.VNMATH.com www.vnmath.com www.vnmath.com 12 Để phương trình bậc hai đối với n có nghiệm nguyên, điều kiện cần là là số chính phương. Nhưng 1 4(9 5) 36 21x x     chi hết cho 3 nhưng không chia hết hco 9 nên không là số chính phương. Vậy không tồn tại số nguyên n nào để 9x + 5 = n(n + 1), tức là không tồn tại số nguyên x để 9x + 5 là tích của hai số nguyên liên tiếp. b) Tạo ra bình phương đúng: Ví dụ 17: Tìm các nghiệm nguyên của phương trình: 2 22 4 19 3x x y   Giải : 2 22 4 2 21 3x x y    2 22( 1) 3(7 )x y    Ta thấy 2 23(7 ) 2 7 2y y     y lẻ Ta lại có 27 0y  nên chỉ có thể 2 1y  Khi đó (2) có dạng: 22( 1) 18x   Ta được: x + 1 = 3 , do đó: 1 22; 4x x   Các cặp số (2 ; 1), (2 ; -1), (-4 ; 1), (-4 ; -1) thỏa mãn (2) nên là nghiệm của phương trình đã cho. c) Xét các số chính phương liên tiếp: Ví dụ 18: Chứng minh rằng với mọi số nguyên k cho trước, không tồn t5ai số nguyên dương x sao cho: ( 1) ( 2)x x k k   Giải: Giả sử ( 1) ( 2)x x k k   với k nguyên, x nguyên dương. Ta có: 2 2 2x x k k   2 2 21 2 1 ( 1)x x k k k        2 2 2 2( 1) 1 2 1 ( 1)k x x x x x         (2) Từ (1) và (2) suy ra: 2 2 2( 1) ( 1)x k x    vô lý Vậy không tồn tại số nguyên dương x để x(x + 1) = k(k + 2) Ví dụ 19: Tìm các số nguyên x để biểu thức sau là một số chính phương: 4 3 22 2 3x x x x    Giải: Đặt 4 3 22 2 3x x x x    = 2y (1) với y Ta thấy: 2 4 3 2 2 2 2 2 2 ( 2 ) ( 3) ( ) ( 3) y x x x x x y x x x x            Ta sẽ chứng minh 2 2 2( 2)a y a   với a = 2x x www.VNMATH.com www.vnmath.com www.vnmath.com 13 Thật vậy: 2 2 2 2 2 2 2 2 4 3 2 1 113 ( ) 0 2 4 ( 2) ( 2) ( 2 2 3) y a x x x a y x x x x x x                   2 2 3 3 1 1 13( ) 0 2 4 x x x        Do 2 2 2( 2)a y a   nên 2 2( 1)y a  4 3 2 2 2 2 2 2 3 ( 1) 2 0 1 2 x x x x x x x x x x                 Với x = 1 hoặc x = -2 biểu thức đã cho bằng 29 3 d) Sử dụng tính chất: nếu hai số nguyên dương nguyên tố cùng nhau có tích là một số chính phương thì mỗi số đếu là số chính phương Ví dụ 20: Giải phương trình với nghiệm nguyên dương: 2xy z (1) Giải: Trước hết ta có thể giả sử (x , y , z) = 1. Thật vậy nếu bộ ba số , ,o o ox y z thỏa mãn (1) và có ƯCLN bằng d, giả sử 1 1 1, ,o o ox dx y dy z dz   thì 1 1 1, ,x y z cũng là nghiệm của (1). Với (x , y , z) = 1 thì x, y, z đôi một nguyên tố cùng nhau, vì nếu hai trong ba số x, y, z có ước chung là d thì số còn lại cũng chia hết cho d. Ta có 2z xy mà (x, y) = 1 nên 2 2,x a y b  với a, b * Suy ra: 2 2( )z xy ab  do đó, z = ab Như vậy: 2 2 x ta y tb z tab     với t là số nguyên dương tùy ý. Đảo lại, hiển nhiên các số x, y, z có dạng trên thỏa mãn (1) Công thức trên cho ta các nghiệm nguyên dương của (1) e) Sử dụng tính chất: nếu hai số nguyên liên tiếp có tích là một số chính phương thí một trong hai số nguyên liên tiếp đó bằng 0 Ví dụ 21: Tìm các nghiệm nguyên của phương trình: 2 2 2 2x xy y x y   (1) Giải: Thêm xy vào hai vế: 2 2 2 22x xy y x y xy    2( ) ( 1)x y xy xy    (2) www.VNMATH.com www.vnmath.com www.vnmath.com 14 Ta thấy xy và xy +

Chuyên Đề Phương Trình Nghiệm Nguyên

PHƯƠNG TRìNH NGHIÊM NGUYÊNVà KINH NGHIệM GIảICHUYÊN Đề:Người thực hiện: lê đình biênI. Một số phương pháp giải phương trình nghiệm nguyênXét tính chia hết1 Phương pháp xét tính chia hếtPhát hiện tính chia hết của 1 ẩnĐưa về phương trình ước số

Biểu thị một ẩn theo ẩn còn lại rồi dùng tính chia hếtXét số dư của từng vế.VD1: Giải phương trình nghiệm nguyên 3x + 17y = 159VD2: Tìm nghiệm nguyên của PT a, xy – x – y = 3 b, 2xy – x + y = 3VD3: Tìm nghiệm nguyên của PT xy – x – y = 2

VD4: Chứng minh rằng: các PT sau không có nghiệm nguyên: 1, x2 – y2 = 1998 2, x2 + y2 = 1999VD5: Tìm nghiệm nguyên của PT 9x + 2 = y2 + yMột số phương pháp giải phương trình nghiệm nguyênPhát hiện tính chia hết của 1 ẩn VD6: Giải phương trình nghiệm nguyên 3x + 17y = 159 (1)Gợi ý

B1: Lý luận để có: 17y chia hết cho 3 B2: Lý luận để có: y chia hết cho 3  Đặt y = 3k (k є Z) B3: Tìm x; y theo k B4: Thử lại vào (1) đúng  KL

Một số phương pháp giải phương trình nghiệm nguyênĐưa về phương trình ước số VD7: Tìm nghiệm nguyên của PT a, xy – x – y = 3 b, 2xy – x + y = 3Gợi ý

Một số phương pháp giải phương trình nghiệm nguyêna/ B1: Biến đổi phương trình thành: (x – 1)(y – 1) = 4 B2: Vì x;y là số nguyên:  (x – 1) và (y – 1) є Ư (4) (x – 1)(y – 1) = 1.4 = 4.1 = (-1).(-4) = (-4).(-1) = 2.2 = (-2).(-2) B3: Lập bảng tìm x; y B4: Trả lờib/ B1: Nhân 2 vế của PT với 2. Biến đổi phương trình thành: (2y – 1)(2x + 1) = 5 B2: Vì x;y là số nguyên:  (2y – 1) và (2x – 1) є Ư (5)

B3: Lập bảng tìm x; y B4: Trả lờiĐưa về phương trình ước số VD7: Tìm nghiệm nguyên của PT a, xy – x – y = 3 b, 2xy – x + y = 3

Kinh nghiệm

Một số phương pháp giải phương trình nghiệm nguyênĐể viết VT: 2xy – x + y thành một tích.Ta biến đổi thành: x(2y – 1) + 1/2 (2y – 1)Để khử mẫu ta nghĩ đến việc nhân 2 vế với 2Phương pháp biểu thị 1 ẩn theo ẩn còn lại rồi dùng tính chia hết VD8: Giải phương trình nghiệm nguyên: xy – x – y = 2Gợi ýB1: Biến đổi PT về: x(y – 1) – y = 2B2: – Khảng định y≠1 – Biểu thị x theo y: x = B3: Tách phần nguyên: x = 1 +

B4: Lý luận để có: (y – 1) є Ư(3)B5: Tìm y  Giá trị tương ứng của xB6: Kết luận Một số phương pháp giải phương trình nghiệm nguyênXét số dư của từng vế VD9: CMR các PT sau không có nghiệm nguyên a) x2 – y2 = 1998 (*)Gợi ý

B1: x2; y2 : 4 dư 0 hoặc 1

B2: x2 – y2 : 4 dư 0 hoặc 1 hoặc 3

B3: 1998 : 4 dư 2

B4:  PT (*) không có nghiệm nguyênMột số phương pháp giải phương trình nghiệm nguyênXét số dư của từng vế VD10: CMR các PT sau không có nghiệm nguyên b) x2 + y2 = 1999 (* *)Gợi ý

B1: x2; y2 : 4 dư 0 hoặc 1

B2: x2 + y2 : 4 dư 0 hoặc 1 hoặc 2

B3: 1998 : 4 dư 3

B4:  PT (* *) không có nghiệm nguyênMột số phương pháp giải phương trình nghiệm nguyênXét số dư của từng vếKinh nghiệm

– Một số chính phương khi : 4 dư 0 hoặc 1– x2 – y2 khi : 4 dư 0 hoặc 1 hoặc 3– x2 + y2 khi : 4 dư 0 hoặc 1 hoặc 2Một số phương pháp giải phương trình nghiệm nguyênMột số phương pháp giải phương trình nghiệm nguyênVD11: Tìm nghiệm nguyên của PT 9x + 2 = y2 + y

Gợi ý

B1: Biến đổi vế phải = y(y + 1)

B2: Lý luận vế trái : 3 dư 2  y(y + 1) : 3 dư 2  y = 3k + 1 y+1 = 3k + 2B3: Tìm được x = k(k + 1)

B4: Thử lại và kết luận: x = k(k + 1) y = 3k + 1Một số phương pháp giải phương trình nghiệm nguyênPhương pháp sắp thứ tự các ẩnPhương pháp xét từng khoảng giá trị của ẩnPhương pháp chỉ ra nghiệm nguyênPhương pháp sử dụng điều kiện để PT bậc hai có nghiệm (∆ ≥ 0)VD12: Giải phương trình nghiệm nguyên x + y + z = xyzVD13: Tìm nghiệm nguyên dương 1/x + 1/y = 1/3

VD14: Tìm x є N 2x + 3x = 5xVD15: Tìm nghiệm nguyên của PT x2 – xy + y2 = 2x – y Một số phương pháp giải phương trình nghiệm nguyênPhương pháp sắp thứ tự các ẩn VD12: Tìm nghiệm nguyên dương của PT x + y + z = xyzGợi ýB3: Chia cả hai vế của BĐT cho Z  xy ≤ 3  xy = 1; 2; 3B4:

B1: Nhận xét: x; y ; z có vai trò bình đẳng trong PTCó thể sắp thứ tự giá trị các ẩn:

B2: Giả sử: 1 ≤ x ≤ y ≤ z  xyz = x + y + z ≤ 3zMột số phương pháp giải phương trình nghiệm nguyênPhương pháp xét từng khoảng giá trị của ẩn VD13: Tìm nghiệm nguyên dương của PT 1/x + 1/y = 1/3Gợi ý

B4: Kết luận: (x; y) = (4; 12); (12; 4); (6; 6)Một số phương pháp giải phương trình nghiệm nguyênPhương pháp xét từng khoảng giá trị của ẩn

Kinh nghiệm

Khi các ẩn trong phương trình có vai trò bình đẳng ta thường sắp thứ tự các ẩn, sau đó dùng BĐT để giới hạn khoảng giá trị của số nhỏMột số phương pháp giải phương trình nghiệm nguyênPhương pháp chỉ ra nghiệm nguyên VD14: Tìm các số tự nhiên x sao cho 2x + 3x = 5xGợi ýB1: Chia hai vế của PT cho 5x  (2/5)x + (3/5)x = 1B2: Xét với x = 0  …………….  LoạiB3: Xét với x = 1  …………….  NhậnB4: Xét với x ≥ 2  (2/5)x < 2/5  (2/5)x < 3/5B5: Kết luận: x = 1Kinh nghiệmCó thể chỉ ra được một hoặc vài số là nghiệm PT. Rồi chứng minh PT không có nghiệm nào khácVế trái < 1  LoạiMột số phương pháp giải phương trình nghiệm nguyênPhương pháp sử dụng ĐK để PT bậc hai có nghiệm VD15: Tìm nghiệm nguyên dương của PT x2 – xy + y2 = 2x – yGợi ýB1: Viết PT thành PT bậc 2 đối với x: x2 – (y + 2)x + (y2 +y) = 0 (*)B2: Tính ∆ = -3y2 + 4B3: Giải ∆ ≥ 0  3y2 ≤ 4  y = 0; 1; -1B4: Tìm giá trị tương ứng của x và thử lạiB5: Kết luận.Kinh nghiệmĐK ∆ ≥ 0 chỉ là ĐK cần chứ chưa đủ để PT có nghiệm nguyên.Kết quả tìm đựơc phải thử lạiMột số phương pháp giải phương trình nghiệm nguyênSử dụng tính chất về chia hết của số chính phươngTạo ra bình phương đúngTạo ra tổng các số chính PhươngXét các số chính phương liên tiếpSử dụng đk biệt số ∆ là số chính phương

Sử dụng tính chất tích của hai số nguyên là số chính phươngVD16: Tìm x є Z để 9x + 5 là tích của 2 số nguyên liên tiếp

VD17: Tìm nghiệm nguyên 2×2 + 4x = 19 – 3y2VD18: Tìm nghiệm nguyên dương 4×2 + 4x + y2 – 6y= 24VD19: Tìm nghiệm nguyên x4 – y4 = 3y2 + 1 VD20: Tìm nghiệm nguyên x2 + 2y2 + 3xy + 2x + 3y + 4 = 0VD21: Tìm nghiệm nguyên dương của PT xy = z2Một số phương pháp giải phương trình nghiệm nguyênSử dụng tính chất về chia hết của số chính phương VD16: Tìm các số nguyên x để 9x + 5 là tích của hai số nguyên liên tiếpGợi ý

B1: Giả sử: 9x+5 = n(n+1) (n є Z)B2: Nhân hai vế của PT với 4 Đưa về dạng: (2n+1)2 = 3(12x+7)B3: Lý luận để có (2n+1)2 ÷ 9  VT ÷ 9B4: Lý luận để có (12x+7) ÷ 3  VP ÷ 9 B5:  Mâu thuẫn  Không tồn tại số nguyên nàoMột số phương pháp giải phương trình nghiệm nguyênSử dụng tính chất về chia hết của số chính phương

Lưu ý một số tính chất

Số CP không tận cùng bằng 2; 3; 7; 8Số CP chia hết cho số nguyên tố P thì chia hết cho P2Số CP chia cho 3 dư 0 hoặc 1Số CP chia cho 4 dư 0 hoặc 1Số CP chia cho 8 dư 0 hoặc 1 hoặc 4Một số phương pháp giải phương trình nghiệm nguyênTạo ra bình phương đúng VD17: Tìm nghiệm nguyên của PT 2×2 + 4x = 19 – 3y2Gợi ýB1: Cộng hai vế của PT với 2 Đưa PT về: 2(x+1)2 = 3(7-y2)B2: Lý luận để có 3(7-y2) chia hết cho 2  (7-y2) chia hết cho 2  y lẻB3: Lý luận để có (7-y2) ≥ 0  y2 ≤ 7B4: Tìm được y2 ≤ 1B5: Tìm x  x = 2; x = 4B6: Kết luận: (x; y) Một số phương pháp giải phương trình nghiệm nguyênTạo ra ra tổng các số chính phương VD18: Tìm nghiệm nguyên dương của PT 4×2 + 4x + y2 – 6y = 24Gợi ý

B1: Biến đổi PT về dạng: (2x+1)2 + (y-3)2 = 34B2: Lý luận (2x + 1) lẻB3: Viết 34 dưới dạng: a2 + b2 (a lẻ): 32 + 52; 52 + 32B4: Tìm được (x; y) Một số phương pháp giải phương trình nghiệm nguyênXét các số chính phương liên tiếp VD19: Tìm nghiệm nguyên x4 – y4 = 3y2 +1Gợi ý

B1: Viết PT dưới dạng: x4 = y4 +3y2 +1B2: Chứng tỏ: y4 +3y2 +1 ≥ (y2 +1)2 Chứng tỏ: y4 +3y2 +1 < (y2 +2)2B3:  (y2 +1)2 ≤ x4 < (y2 +2)2  x4 = (y2 +1)2 B4: Giải PT: y4 +2y2 +1 = y4 +3y2 +1  y = 0B5: Tìm xB6: Kết luận (x; y)Một số phương pháp giải phương trình nghiệm nguyênXét các số chính phương liên tiếp Lưu ý:

Sử dụng tính chất:

TC1: Nếu 2 số nguyên dương NTCN có tích là một SCP Thì mỗi số đều là SCPTC2: Nếu 2 số nguyên liên tiếpcó tích là một SCP Thì một trong hai số nguyên liên tiếp đó bằng 0Một số phương pháp giải phương trình nghiệm nguyênSử dụng điều kiện biệt số ∆ là SCP VD21: Tìm nghiệm nguyên của PT x2 + xy + y2 = x2y2 Gợi ý

B1: thêm xy vào 2 vế của PT  (x + y)2 = xy(xy + 1)B2: xy và xy + 1 là 2 số nguyên liên tiếp có tích là 1 SCP  xy = 0 xy + 1 = 0B3: Xét từng trường hợp có kq: (x; y) = (0; 0); (1; -1); (-1; 1)Một số phương pháp giải phương trình nghiệm nguyên

VD22: Tìm nghiệm nguyên của PT x3 + 2y3 = 4z3 (*) Gợi ý

B1: Lý luận để có x chia hết cho 2. Đặt x = 2×1 (x1 є Z) B2: thay x = 2×1 vào (*)  y chia hết cho 2. Đặt y = 2y1 (y1 є Z) B3: thay y = 2y1 vào (*)  z chia hết cho 2. Đặt z = 2z1 (z1 є Z) II. Một số dạng phương trình nghiệm nguyênMột số dạng phương trình nghiệm nguyên VD23: Tìm nghiệm nguyên của PT (x – 2)(3x – 2)(5x – 2)(7x – 2) = 945 Gợi ý

B1: Nếu x≥ 3  VT ≥ 1.7.13.19 = 1729 (loại)B2: Nếu x ≤ -2  VT ≥ 4.8.12.16 = 6164 (loại)  -2 ≤ x < 3  x є { -1; 0; 1; 2}B3: Lần lượt thay x = -1; 0; 1; 2 vào PT: x = -1 (thoả mãn)Kinh nghiệm– Nếu triển khai và giải PT bậc 4  gặp nhiều K2– Dựa vào x є Z dùng P2 xét khoảng giá trị của ẩn để giải bài toánMột số dạng phương trình nghiệm nguyên ax + by = c (a; b; c є Z) Kinh nghiệm B1: Rút gọn phương trình. Chú ý đến tính chia hết của các ẩnB2: Biểu thị ẩn mà hệ số của nó có GTTĐ nhỏ (chẳng hạn x) theo ẩn kiaB3: Tách riêng giá trị nguyên ở biểu thức của xB4: Đặt điều kiện để phân số trong biểu thức của x bằng một số nguyên t1  Được PT bậc nhất 2 ẩn y và t1B5: Cứ tiếp tục làm như trên cho đến khi các ẩn đều được biểu thị dưới dạng một đa thức với các hệ số nguyên. VD24: Tìm nghiệm nguyên của PT: 11x + 18y = 120Một số dạng phương trình nghiệm nguyênDạng 1: axy + bx + cy + d = 0 (a; b; c; d є Z) Dạng 2: ax2 + by2 + c = 0 (a; b; c є Z)Dạng 3: ax2 + by2 + cx + d = 0 ax2 + by2 + cy + d = 0 (a; b; c; d є Z) Dạng 4: ax2 + by2 + cxy + d = 0 (a; b; c; d є Z)

VD25: Tìm nghiệm nguyên 5x – 3y = 2xy – 11

VD26: Tìm nghiệm nguyên 3×2 + 4y2 = 84

VD27: Tìm nghiệm nguyên x2 – 2x – 11 = y2

VD28: Tìm nghiệm nguyên 5×2 – y2 + 4xy – 9 = 0Một số dạng phương trình nghiệm nguyênDạng 5: ax2 + by2 + cx + dy = 0 (a; b; c; d є Z)Dạng 6: ax2+by2+cx+dy+e = 0 (a; b; c; d; e є Z)Dạng 7: ax2+by2+cxy+dx+ey = 0 (a; b; c; d; e є Z)Dạng 8: ax2+by2+cxy+dx+ey+g= 0 (a; b; c; d; e є Z)

VD29: Tìm nghiệm nguyên dương x2 + y2 = 5(x – y)

VD30: Tìm nghiệm nguyên 3×2 + 4y2 + 12x + 3y + 5 = 0

VD31: Tìm nghiệm nguyên x + y + xy = x2 + y2VD32: Tìm nghiệm nguyên x2 -xy + y2 = 2x – 3y – 2 Một số dạng phương trình nghiệm nguyênKinh nghiệm– Đưa về Phương trình ước.– Viết phương trình đó dưới dạng Phương trình bậc hai đối với một ẩn rồi dùng điều kiện: ∆ ≥ 0 hoặc ∆ là số chính phươngMột số dạng phương trình nghiệm nguyên VD32: x3 + x2 + x + 1 = y3 Gợi ý

B1: Viết PT dưới dạng: (x-y)3 + 3xy(x-y) = xy + 8 B2: Đặt: x – y = a va xy = b  a3 – 8 = – b(3a – 1)B3: Lý luận để có a3 – 8 chia hết cho 3a-1B4: Nhân với 27 215 chia hết 3a – 1B5: (3a – 1) є Ư (± 1; ± 5; ± 43; ± 215)B6: Tìm a và b  Tìm x; yMột số dạng phương trình nghiệm nguyênKinh nghiệm– Đưa về Phương trình ước.– Đặt ẩn phụ cho biểu thức (x + y) hoặc (x – y) và xy.– Với biểu thức (x3 + y3) hoặc (x3 – y3) nên vận dụng HĐTMột số dạng phương trình nghiệm nguyên VD34: x4 – 4×2 + y2 + 2x2y – 9 = 0 Gợi ý

B1: Biến đổi về dạng: (x2 + y + 2x)(x2 + y – 2x) = 9B2: Đưa về phương trình ước sốB3: Tìm x; yMột số dạng phương trình nghiệm nguyên VD35: Tìm nghiệm nguyên của PT x(x+1)(x+2)(x+3) = y2 Gợi ý

B1: Biến đổi về dạng: (x2 + 3x)(x2 + 3x + 2) = y2 B2: Đặt (x2 + 3x + 1) = a  (a+y)(a-y) = 1B3: Tìm được y = 0  x = Một số dạng phương trình nghiệm nguyênKinh nghiệm– Đưa về Phương trình bậc hai với hai ẩn– Phân tích thành nhân tử để phát hiện một biểu thức là số chính phương.– Phát hiện một số chính phương năm giữa hai số chính phươngMột số dạng phương trình nghiệm nguyên VD36: Tìm nghiệm nguyên của PT 6x + 15y + 10z = 3 Gợi ý

B1: Lý luận để có 10 z chia hết cho 3  z chia hết cho 3  z = 3k (k є Z)B2: Giải PT hai ẩn x; y với k là tham số: 2x + 5y = 1 – 10kB3: Đưa PT về dạng: x = – 5k – 2y + B4: Đặt = t  y = 1 – 2tB5: Viết nghiệm x; y; z theo k và tMột số dạng phương trình nghiệm nguyên VD37: Tìm nghiệm nguyên của PT 2xyz = x + y + z + 6 Gợi ý

B1: Do x; y; z có vai trò bình đẳng  giải sử: 1 ≤ x ≤ y ≤ z  2xyz ≤ 3z + 16B2: Do z nguyên dương  2xy ≤ 3 + 16/z ≤ 19  xy ≤ 9B3: Do x nguyên dương  x2 ≤ xy B4: x2 ≤ 9  x є (1; 2; 3)B5: Thay lần lượt x  Tìm y, zMột số dạng phương trình nghiệm nguyênKinh nghiệm– Tìm dấu hiệu chia hết  Đưa về PT bậc nhất đối với hai ẩn– Dựa vào vai trò bình đẳng của ẩn để dùng phương pháp chặn– Trong trường hợp khác có thể xét một hoặc một vài giá trị của một ẩn rồi xét tiếp trường hợp còn lạiMột số dạng phương trình nghiệm nguyên VD38: Tìm nghiệm nguyên dương của PT 1/x + 1/y + 1/6xy = 1/6 Gợi ý

B1: Nhân hai vế của PT với 6xyB2: Đưa về PT ước số: (x – 6) (y – 6) = 37B3: Tìm x; y.Kinh nghiệm

Tìm cách khử mẫu Đưa về phương trình ước sốMột số dạng phương trình nghiệm nguyên VD39: Tìm nghiệm nguyên dương của PT: 2x + 3= y2 Gợi ý

B1: Xét với x ≥ 2  VT: 4 dư 3  Không thoả mãn VP: 4 dư 1  x = 0; 1B2: Xét từng trường hợp  (x; y)Kinh nghiệm

Tìm STN k để với x ≥ k thì PT không có nghiệm nguyên Xét x є (0; 1; …….; k-1) Chú ý: + an – bn chia hết a – b với n là số tự nhiên + an + bn chia hết a + b với n là số tự nhiên lẻ + (a + b)n chia hết ak + bn với n є N; k є Z VD40: Tìm nghiệm nguyên dương của PT: x + x + 3 = y Gợi ý

B1: Lý luận để có y chẵn  y = 2k (k є Z) x = 4 – 3kB2: Tìm được 3z + 10k = 1  z = -3k + B3: Đặt = t  (x; y; z) theo t{{ Một số dạng phương trình nghiệm nguyên VD42: Tìm giá trị của m để PT sau có hai nghiệm nguyên dương x2 + mx + 2 = 0 Gợi ý

B1: Gọi x1; x2 là các nghiệm nguyên dương  x1 + x2 = – m (m є Z)B2: ∆ = m2 – 8 là số chính phương Đặt (m2 – 8) = k2 (k є N)B3: Đưa về PT ước: (m – k)(m + k) = 8III. Ứng dụng: Bài toán đưa về giải PT nghiệm nguyên1, Bài toán về số tự nhiên và các chữ số2, Bài toán về tính chia hết và số nguyên tố3, Bài toán thực tếTrân trọng cảm ơn !Người thực hiện: Phạm Ngọc Thuý

Chuyên Đề: Giải Phương Trình Nghiệm Nguyên

Chuyên Đề: Giải Phương trình nghiệm nguyên I-Phương trình nghiệm nguyên dạng: ax + by = c (1) với a, b, c ẻ Z 1.Các định lí: a. Định lí 1: Điều kiện cần và đủ để phương trình ax + by = c (trong đó a,b,c là các số nguyên khác 0 ) có nghiệm nguyên (a,b) là ước của c. b.Định lí 2: Nếu (x0, y0) là một nghiệm nguyên của phương trình ax + by = c thì nó có vô số nghiệm nguyên và nghiệm nguyên (x,y) được cho bởi công thức: Với t є Z, d = (a,b) 2.Cách giải: Bước 1: Rút ẩn này theo ẩn kia (giả sử rút x theo y) Bước 2: Dựa vào điều kiện nguyên của x, tính chất chia hết suy luận để tìm y Bước 3: Thay y vào x sẽ tìm được nghiệm nguyên Ví dụ 1: Giải phương trình nghiệm nguyên: 2x + 5y =7 Hướng dẫn: Ta có 2x + 5y =7 Û x = Û x = 3 – 2y + Do x, y nguyên ị nguyên. Đặt = t với (t є Z ) ị y = 1 – 2t ị x = 3 – 2(1- 2t) + t = 5t + 1 Vậy nghiệm tổng quát của phương trình là: x = 5t + 1 y = -2t +1 (t є Z ) Ví dụ 2: Giải phương trình nghiệm nguyên 6x – 15 y = 25 Hướng dẫn: Ta thấy( 6,15 ) = 3 mà 3/25 Vậy không tồn tại x,y nguyên sao cho 6x- 15y = 25 Ví dụ 3: Tìm nghiệm nguyên dương của phương trình. 5x + 7y = 112 Hướng dẫn: Ta có 5x + 7y = 112 ị x = = 22 - y + Do x, y nguyên ị nguyên hay (2 – 2y) 5 Û 2(1-y) 5; (2 , 5) = 1 ị (1-y) 5 hay (y-1)5 . Đặt y-1 = 5t (t є Z ) ị y = 5t +1 thay y vào x ta có x = 21 – 7t ị ị t = Nếu t = 0 ị x = 21; y = 1 Nếu t = 1 ị x = 14; y = 6 Nếu t = 2 ị x = 7; y = 11 II. Phương trình nghiệm nguyên đưa về dạng g (x1, x2,., xn) . h (x1, x2,., xn) = a (3) Với a є Z 1.Cách giải: Đặt g (x1, x2,., xn) = m (với m là ước của a) ị h(x1, x2,., xn) = Giải hệ: g (x1, x2,., xn) = m h(x1, x2,., xn) = tìm được x1, x2,., xn thử vào (3) ta được nghiệm của phương trình. 2.Chú ý: -Nếu a = 0 ta có g (x1, x2,., xn) = 0 h(x1, x2,., xn) = 0 -Nếu a = pa với p nguyên tố thì từ pt (3) ta có: g (x1, x2,., xn) = pa1 h(x1, x2,., xn) = pa2 Với a1 + a2 = a Ví dụ 4: Tìm x, y є Z biết x – y + 2xy = 6 Hướng dẫn: Ta có x – y + 2xy = 6 Û 2 x – 2y + 4 xy = 12 Û 2 x – 2y + 4 xy –1 = 11 Û (2x – 1) + 2y(2x-1) = 11Û (2x – 1) (2y + 1) = 11 Ta có 11 = 1.11= (-1)(-11) = 11.1 = (-11)(-1) Ta có 2y + 1 = 1 ị (x; y) = (6; 0) 2x – 1 = 11 2y + 1 = -1 ị (x; y) = (-5; -1) 2x – 1 = -11 2y + 1 = 11 ị (x; y) = (1, 5) 2x – 1 = 1 2y + 1 = -11 ị (x; y) = ( 0; -6) 2x – 1 = -1 Ví dụ 5: Tìm nghiệm nguyên dương của phương trình: 1 + x + x2 + x3 = 2y Hướng dẫn: Ta có 1 + x + x2 + x3 = 2y Û (1 + x) (1 + x2) = 2y ị 1 + x = 2 m và 1 + x2 = 2y – m (m nguyên dương) ị x = 2 m – 1 ị x2 = 22m – 2 m +1 + 1 x2 = 2y – m - 1 x2 = 2y – m – 1 ị 22m – 2m + 1 + 1 = 2 y – m - 1 ị 2 y – m – 22m + 2m +1 = 2 Nếu m = 0 ị x = 0 ; y = 0 (t/m) ị 2 y – m – 1 lẻ ị 2 y – m – 1 = 1 ị y – m – 1 = 0 ị y = m + 1 ị 2 m - 22m – 1 = 0 ị 2 m = 22m – 1 ị m = 2m – 1 ị m = 1 ị y = 2 ; x = 1 Vậy (x, y) = (0; 0); (1; 2) III. Phương trình nghiệm nguyên đưa về dạng [g1 (x1, x2,., xn)]2 + [g2 (x1, x2,., xn)]2 + + [gn (x1, x2,., xn)]2 = 0 1.Cách giải:Ta thấy vế trái của phương trình là các số hạng không âm, tổng của chúng bằng 0 nên mỗi số hạng phải bằng 0 g1 (x1, x2,., xn) = 0 Do vậy có: g2 (x1, x2,., xn) = 0 .. gn (x1, x2,., xn) = 0 Giải hệ này ta được x1 , x2 ,, xn Ví dụ 6: Tìm nghiệm nguyên của phương trình: 2x2 + y 2 –2xy + 2y – 6x + 5 = 0 Hướng dẫn: (Dùng phương pháp phân tích thành nhân tử ta biến đổi vế trái của phương trình) Ta có 2x2 + y 2 –2xy + 2y – 6x + 5 = 0 Û y 2 – 2y (x - 1) + (x-1)2 + x2 – 4x + 4 = 0 Û (y – x + 1)2 + (x – 2 )2 = 0 Vậy y – x + 1 = 0 hay x = 2 x – 2 = 0 y = 1 Vậy nghiệm nguyên của phương trình là x = 2 ; y = 1 Ví dụ 7: Tìm nghiệm nguyên của phương trình : (x –1) (y+1) = (x+ y)2 Hướng dẫn: Ta có (x-1) (y+1) = (x+ y)2 Û (x-1) (y+1) = [(x-1) + (y+1)]2 Û [(x-1) + (y+1)]2 - (x-1) (y+1) = 0 Û (x-1)2 + (y+1)2 + (x-1) (y+1) = 0 Û [(x-1) + (y+1)]2 + (y+1)2 = 0 Û y + 1 = 0 Û y = -1 (x-1) + (y+1) = 0 x = 1 Vậy nghiệm của phương trình là ( x = 1 ; y = -1) IV- Phương trình nghiệm nguyên mà các ẩn có vai trò bình đẳng Khi làm toán ta thường gặp một số bài toán mà trong đó các ẩn bình đẳng với nhau . Để giải các bài toán đó có nhiều cách giải khác nhau tuỳ thuộc vào từng loại cụ thể. ở đây ta nghiên cứu đến 1 phương pháp giải toán này: Ta giả sử các ẩn xảy ra theo một trật tự tăng dần rồi tiến hành giải Ví dụ 8: Tìm nghiệm nguyên dương của phương trình: + + + = 1 Hướng dẫn: Giả sử 1 Ê x Ê y Ê z ị x2 Ê xy Ê xz Ê yz Ê xyz ị 1 = + + + Ê + + + Û 1 Ê ị x2 Ê 12 ị x є 1, 2,3 Nếu x = 1 ị + + + = 1 ị z + 1 + y + 9 = yz ị yz – z – y + 1 = 11 (y- 1) (z - 1) = 11 ị y = 2 ; z = 12 hoặc z =2 ; y = 12 Nếu x = 2 ị + + + = 1 ị (2y - 1) (2z-1) = 23 ị y = 1; z = 12 hoặc y = 12; z = 1 Nếu x = 3 ị (3y – 1) (3z - 1) = 37 vô nghiệm Vậy (x, y, z) = (1; 2, 12) và các hoán vị Một số phương pháp giải phương trình nghiệm nguyên I- Phương pháp 1 : Sử dụng tính chẵn lẻ Ví dụ 9: Tìm x, y nguyên tố thoả mãn: y2 – 2x2 = 1 Hướng dẫn: Ta có y2 – 2x2 = 1 ị y2 = 2x2 +1 ị y là số lẻ Đặt y = 2k + 1 (với k nguyên).Ta có (2k + 1)2 = 2x2 + 1 Û x2 = 2 k2 + 2k ị x chẵn , mà x nguyên tố ị x = 2, y = 3 Ví dụ 10: Tìm nghiệm nguyên dương của phương trình (2x + 5y + 1)( + y + x2 + x) = 105 Hướng dẫn: Ta có: (2x + 5y + 1)( + y + x2 + x) = 105 Ta thấy 105 lẻ ị 2x + 5y + 1 lẻ ị 5y chẵn ị y chẵn + y + x2 + x = + y + x(x+ 1) lẻ có x(x+ 1) chẵn, y chẵn ị lẻ ị = 1 ị x = 0 Thay x = 0 vào phương trình ta được (5y + 1) ( y + 1) = 105 Û 5y2 + 6y – 104 = 0 ị y = 4 hoặc y = ( loại) Thử lại ta có x = 0; y = 4 là nghiệm của phương trình II. Phương pháp 2 : Phương pháp phân tích Thực chất là biến đổi phương trình về dạng: g1 (x1, x2,., xn) h (x1, x2,., xn) = a Ví dụ 11: Tìm x, y nguyên sao cho ( x + y ) P = xy với P nguyên tố. Giải Ta có ( x + y ) P = xy với xy – Px – Py = 0 Û x ( y – P ) – ( Py – P2) = P2 Û ( y- P ) ( x- P ) = P2 Mà P nguyên tố ị P2 = 1.P2 = P.P = (-1)(-P2) = ( -P ) (-P) ị Các cặp số (x,y ) là: (P+1, P(P+1) ); ( P-1, P (P-1) ); (2p, 2p); (0,0) và các hoán vị của chúng. III- Phương pháp loại trừ ( phương pháp 3 ) Khẳng định nghiệm rồi loại trừ các giá trị còn lại của ẩn Ví dụ 12: Tìm nghiệm nguyên dương của phương trình: 1! + 2! + + x! = Hướng dẫn: Với x³ 5 thì x! có tận cùng là 0 và 1! + 2! + 3! + 4! Có tận cùng là 3 ị 1! + 2! + + x! có tận cùng là 3, không là số chính phương (loại) Vậy x < 5 mà x nguyên dương nên: x = Thử vào phương trình ta được (x = 1, y= 2); (x = 3, y= 3) là thoả mãn IV.Phương pháp 4: Dùng chia hết và có dư Ví dụ 13: Tìm nghiệm nguyên của phương trình: x2 – 2y2 = 5 Hướng dẫn: Xét x 5 mà x2 – 2y2 = 5 ị 2y2 5 ị y2 5 (2,5) = 1 5 là số nguyên tố ị y2 25 ị x2 – 2y2 25 lại có x 5 ị x2 25 5 25 loại Xét x 5 ị y 5 và x2 chia cho 5 có các số dư 1 hoặc 4 y2 chia cho 5 có các số dư 1 hoặc 4 ị 2y2 chia cho 5 dư 2 hoặc 3 ị x2 – 2 y2 chia cho 5 dư 1 hoặc 2(loại) Vậy phương trình x2 – 2y2 = 5 vô nghiệm Ví dụ 14: Tìm x, y là số tự nhiên thoả mãn: x2 + = 3026 Hướng dẫn: Xét y = 0 ị x2 + 30 = 3026 ị x2 = 3025 mà x є N ị x = 55 mà 3026 chia cho 3 dư 2 (loại). Vậy nghiệm (x,y) = (55,0) V. Phương pháp 5 : Sử dụng tính chất của số nguyên tố Ví dụ 15: Tìm x, y, z nguyên tố thoả mãn: xy + 1 = z Mà z nguyên tố ị z lẻ ị xy chẵn ị x chẵn ị x = 2 Xét y = 2 ị 22 + 1 = 5 là nguyên tố ị z = 5 (thoả mãn) Có 4 chia cho 3 dư 1 ị (2.4k+1) 3 ị z 3 (loại) Vậy x = 2, y = 2, z = 5 thoả mãn Ví dụ 16 : Tìm số nguyên tố p để 4p + 1 là số chính phương Hướng dẫn: đặt 4p + 1 = x2 (x є N) ị x lẻ đặt x = 2k + 1 (k є N) ị 4p + 1 = (2k + 1)2 Û 4p + 1 = 4k2 + 4k + 1 Û p =k(k+1) Û k(k + 1) chẵn ị p chẵn, p nguyên tố ị p = 2 VI. Phương pháp 7: Đưa về dạng tổng Ví dụ 17: Tìm nghiệm nguyên của phương trình: x2 + y2 – x – y = 8 Hướng dẫn: Ta có x2 + y2 –x – y = 8 Û 4 x2 + 4 y2 – 4 x –4y = 32 Û (4x2 – 4x +1) + (4y2 – 4y + 1) = 34 Û (2x – 1)2 + (2y – 1)2 = 34 Bằng phương pháp thử chọn ta thấy 34 chỉ có duy nhất 1 dạng phân tích thành tổng của 2 số chính phương 32 và 52 Do đó ta có = 3 hoặc = 5 = 5 = 3 Giải ra ta được (x,y) = (2,3); (2,-2); (-1, -2); (-1, 3) và các hoán vị của nó. Ví dụ 18: Tìm nghiệm nguyên của phương trình: x2 – 4xy + 5y2 = 169 Hướng dẫn: Ta có x2 – 4xy + 5y2 = 169 Û (x – 2y)2 + y2 = 169 Ta thấy 169 = 02 + 132 = 52 + 122 ị = 0 hoặc = 13 = 13 = 0 hoặc = 5 hoặc = 12 = 12 = 5 Giải ra ta được (x, y) = (29, 12);(19, 12); (-19, -12); (22, 5); (-2, 5) ;(2, -5); (-22, -5); (26, 13); (-26, -13); (-13. 0); (13, 0) VII. Phương pháp 7 : Dùng bất đẳng thức Ví dụ 19: Tìm nghiệm nguyên của phương trình: x2 –xy + y2 = 3 Hướng dẫn: Ta có x2 –xy + y2 = 3 Û (x- )2 = 3 - Ta thấy (x- )2 ³ 0 ị 3 - ³ 0 ị -2 Ê y Ê 2 ị y= ± 2; ±1; 0 thay vào phương trình tìm x Ta được các nghiệm nguyên của phương trình là : (x, y) = (-1,-2), (1, 2); (-2, -1); (2,1) ;(-1,1) ;(1, -1) Bài tập luyện tập rèn tư duy sáng tạo Bài 1:Tìm nghiệm nguyên của phương trình 2x + 3y = 11 Hướng dẫn Cách 1: Ta thấy phương trình có cặp nghiệm đặc biệt là x0 = 4, y0 = 1 Vì 2.4 + 3.1 = 11 ị( 2x + 3y) – (2.4 + 3.1) = 0 Û 2(x-4) + 3(y-1) = 0 ị 2(x-4) = - 3(y-1) mà (2,3) = 1 Đặt x – 4 = 3k và y – 1 = 2k với ( k ẻ Z) Vậy nghiệm tổng quát của pt là : x = 4 – 3k y = 1+ 2k ( k ẻ Z) *Nhận xét: Theo cách giải này phải tìm ra 1 cặp nghiệm nguyên đặc biệt (x0, y0) của phương trình vô định ax + by = c Nếu phương trình có hệ số a, b, c lớn thì cách giải khó khăn. Cách 2: Dùng tính chất chia hết. Ta có 2x + 3y = 11 ị x= = 5- y- Do x, y nguyên ị nguyên đặt = k ị y = 2k +1 ị x = 4- 3k (k ẻ Z) y = 2k +1 (k ẻ Z) Vậy nghiệm tổng quát: x = 4- 3k Bài 2: Tìm cặp số nguyên dương (x,y) thoả mãn phương trình: 6x2 + 5y2 = 74 Hướng dẫn: Cách 1: Ta có 6x2 + 5y2 = 74 Û 6x2 –24 = 50 – 5y2 Û 6(x2 – 4) = 5(10 – y2) ị 6(x2 – 4) 5 ị x2 – 4 5 (6, 5) = 1 ị x2 = 5t + 4 (t ẻN) Thay x2 – 4 = 5t vào phương trình ị y2 = 10 – 6t ị t = 0 hoặc t = 1 với t = 0 ta có x2 = 4, y2 = 10 (loại) Với t = 1 ta có x2 = 9 Û x = ± 3 y2 = 4 y = ± 2 mà x, y ẻ Z ị x = 3, y = 2 thoả mãn Cách 2: Sử dụng tính chẵn lẻ và phương pháp chặn Ta có 6x2 + 5y2 = 74 là số chẵn ị y chẵn lại có 0< 6x2 ị 0< 5y2 < 74 Û 0 < y2 < 14 ị y2 = 4 ị x2 = 9 Cặp số (x,y) cần tìm là (3, 2) Cách 3: Ta có 6x2 + 5y2 = 74 Û 5x2 + 5y2 + x2 + 1 = 75 ị x2 + 1 5 mà 0 < x2 Ê 12 ị x2 = 4 hoặc x2 = 9 Với x2 = 4 ị y2 = 10 loại Với x2 = 9 ị y2 = 4 thoả mãn cặp số (x,y) cần tìm là (3, 2) Bài 3: Tìm nghiệm nguyên của phương trình: x2 + y2 = 2x2y2 Hướng dẫn: Cách 1: Đặt x2 = a, y2 = b Ta có a + b = 2 ab ị a b ị = ị a = ± b b a Nếu a = b ị 2a = 2a2 ị a= a2 ị a= 0, a= 1ị (a,b) = (0, 0); (1, 1) Nếu a = - b ị 2 b2 = 0 ị a = b = 0 ị (x2, y2) = (0, 0); (1, 1) ị (x, y ) = (0, 0); (-1, -1); (-1, 1); (1, -1) ; (1, 1) Cách 2: Ta có x2 + y2 = 2x2y2. Do x2, y2 ³ 0 Ta giả sử x2 Ê y2 ị x2 + y2 Ê 2 y2 ị 2x2 y2 Ê 2y2 Nếu y = 0 phương trình có nghiệm (0;0) Nếu y 0ị x2 Ê 1 ị x2= 0 hoặc x2 = 1 ị y2 = 0 (loại) hoặc y2 = 1 ị (x, y) = (1, 1); (1, -1) ; (-1, 1) Vậy phương trình có nghiệm (x;y) =(0, 0); (-1, -1); (-1, 1); (1, -1) ; (1, 1) Cách 3: Có x2 + y2 = 2x2y2 Û 2x2 + 2y2 = 4 x2y2 Û 4 x2y2 –2x2 – 2y2 + 1 = 1 2x2 (2y2 - 1) – (2y2 - 1)= 1 Û (2x2 – 1) (2y2 - 1) = 1 Mà 1 = 1.1 = (-1)(-1) ị (x2, y2) = (1, 1); (0, 0) ị (x, y) = (1, 1); (0, 0) ; (1, -1); (-1; -1); (-1, 1) Bài 4: Tìm nghiệm tự nhiên của phương trình: x2 –3xy + 2y2+ 6 = 0 Hướng dẫn: Ta thấy(x, y) = (0, 0) không phải là nghiệm của phương trình Ta coi phương trình x2 – 3xy + 2y2 + 6 = 0 ẩn x ta tính = y2 – 24 Phương trình có nghiệm tự nhiên thì là số chính phương ị y2 – 24 = k2 ị (y – k)(y + k) = 24 (kẻN) mà 24 = 24.1 = 12.2 = 6.4 = 3.8 ; y+k và y – k cùng chẵn ị y+ k = 6 ị y = 5 hoặc y+ k = 12 ị y = 7 y – k = 4 y – k = 2 Thay vào ta tìm được (x,y) = (8, 7); (13, 7); (7, 5); (8,5) Bài 5: Tìm nghiệm nguyên của phương trình 2x2 + 2y2 – 2xy + y + x – 10 = 0 Hướng dẫn: C1: Ta có phương trình đã cho Û 2x2 – (2y-1) x + 2y2 + y – 10 = 0 Coi x là ẩn y là tham số ta có phương trình bậc 2 ẩn x Xét = (2y – 1)2 – 4.2 (2y2 + y -10) = -12y2 – 12y+ 81 Để nghiệm x nguyên thì là số chính phương Đặt k2= -12y2 – 12 y + 81 ị k2 + 3(2y + 1) = 84 ị (2y + 1)2 = 28 - Ê 28; (2y + 1)2 lẻ ị (2y + 1)2 = 1, 9, 25 ị y = 0, 1, -2, 2, -3 thử trực tiếp vào phương trình ta tìm được các cặp số (x, y) = (2, 0); (0, 2) thoả mãn C2: Đặt x + y = a, xy = b ta có x, y ẻ Z ị a, b ẻ Z phương trình 2x2 – (2y-1) x + 2y2 + y – 10 = 0 Û 2a2 – 4b + a – 10 = 0Û 4a2 – 8b + 2a – 20 = 0 Û (a+ 1)2 + 3a2 – 8b – 21 = 0 Û (a+ 1)2 + 3a2 = 8b + 21 lại có (x+ y)2³ 4 xy ị a2 ³ 4b ị 8b + 21 Ê 2a2 + 21 ị (a+ 1)2 + 3a2 Ê 2a2 + 21 ị (a+ 1)2 Ê 21 mà (a+ 1)2 là số chính phương ị (a+ 1)2 ẻ {1, 4, 9, 16}ị a ẻ {0, 1, 2, 3} Với a = 0 ị 12 + 3. 0 = 8b + 21 ị 8b = 20 loại Với a = 1 ị (1+1)2 + 3.12 = 8b + 21 ị 8b = -14 loại Với a = 2 ị (1+ 2)2 + 3.22 = 8b + 21 ị 8b = 0 ị b = 0 Với a = 3 ị (1+ 3)2 + 3.32 = 8b + 21 ị 8b = 22 loại Vậy được a = 2, b = 0 ị xy = 0 x + y = 2 ị (x, y ) = (0, 2); (2, 0) thoả mãn Bài 6 :Tìm tất cả các nghiệm nguyên dương x, y sao cho : x2 + 4x – y2 = 1 Hướng dẫn: Cách 1: Ta có x2 + 4x – y2 = 1 Û (x + 2)2 - y2 = 5 Û (x + 2+ y)(x+ 2-y) = 5 ị x+ 2 + y = 5 ị x = 1, y = 2 x + 2 – y = 1 Vậy nghiệm của phương trình là x = 1, y = 2 Cách 2: Ta có x2 + 4 x – y2 = 1Û x2 + 4 x – (y2 + 1) = 0 = 4 + y2 + 1 ị x = Để phương trình có nghiệm thì là số chính phương ị 4 + y2 + 1 = k2 Û (k- y) (k+ y) = 5 ị y = 2 thay vào phương trình tìm được x = 1 Vậy nghiệm nguyên dương của phương trình là x = 1; y = 2 Bài 7: Hai đội cờ thi đấu với nhau mỗi đấu thủ của đội này phải đấu 1 ván với mỗi đấu thủ của đội kia. Biết rằng tổng số ván cờ đã đấu bằng 4 lần tổng số đấu thủ của hai đội và biết rằng số đấu thủ của ít nhất trong 2 đội là số lẻ hỏi mỗi đội có bao nhiêu đấu thủ. Hướng dẫn: Gọi x, y lần lượt là số đấu thủ của đội 1 và đội 2 (x, y nguyên dương ) Theo bài ra ta có xy = 4 (x + y) Đây là phương trình nghiệm nguyên ta có thể giải bằng các cách sau Cách 1: Có xy = 4(x + y) Û xy – 4x – 4y + 16 = 16 Û (x-4) (y - 4) = 16 mà 16 = 1.16 = 2.8 = 4.4 lại có ít nhất 1 đội có số đấu thủ lẻ ị x – 4 = 1 Û x = 5 hoặc x = 20 y-4 = 16 y = 20 y = 5 Cách 2: Ta thấy x, y bình đẳng.Không mất tính tổng quát ta giả sử xÊ y Ta có x, y nguyên dương xy = 4 (x + y) Û + = 1 lại có ³ Û + Ê Û Ê 1 ị x Ê 8 ị x= 5, 6, 7, 8 Thử trực tiếp ta được x = 5, y = 20 (thoả mãn) Vậy 1 đội có 5 đấu thủ còn đội kia có 20 đấu thủ Bài 8: Tìm năm sinh của Bác Hồ biết rằng năm 1911 khi Bác ra đi tìm đường cứu nước thì tuổi Bác bằng tổng các chữ số của năm Bác sinh cộng thêm 3. Hướng dẫn: Ta thấy nếu Bác Hồ sinh vào thể kỷ 20 thì năm 1911 Bác nhiều nhất là 11 tuổi (1+ 9 + 0 + 0 + 3) loại. Suy ra Bác sinh ra ở thế kỷ 19 Gọi năm sinh của Bác là 18 xy (x, y nguyên dương, x, y Ê 9) Theo bài ra ta có: 1911 - 18 xy = 1 + 8 + x + y = 3 Û 11x + 2y = 99 ị 2y 11 mà (2, 11) = 1 ị y 11 mà 0Ê y Ê 9 ị y = 0 ị x = 9. Vậy năm sinh của Bác Hồ là 1890 Bài 9: Tìm tất cả các số nguyyên x, y thoả mãn phương trình = Hướng dẫn: Ta có = Û 7 (x+ y) = 3 (x2 – xy + y2) ị 28k = 3(3k2+ q2) ị k 3 và k có dạng 3m (mẻ Z+) ị 28 m = 27m2 + q ị m( 28 – 27m) = q2 ³ 0 ị m = 0 hoặc m = 1 Với m = 0 ị k = 0 ị q = 0 ị x = y = 0 (loại) Với m = 1 thì k = 3; p = 9ị 28 = 27 + q2 ị q = ± 1 Khi p = 9, q = 1 thì x = 5, y= 4 khi p = 9, q = 1- thì x = 4, y= 5 Vậy nghiệm của phương trình là (x, y) = (4, 5); (5, 4) Bài 10: Hãy dựng một tam giác vuông có số đo 3 cạnh là a, b, c là những số nguyên và có cạnh đo được 7 đơn vị Hướng dẫn: Giả sử cạnh đo được 7 đơn vị là cạnh huyền (a = 7) ị b2 + c2 = 72 ị b2 + c2 7 ị b 7; c 7 (vì số chính phương chia hết cho 7 dư 0, 1, 4, 2) lại có 0<b, c< 7 loại ị Cạnh đo được là cạnh góc vuông giả sử b = 7 Ta có a2 – c2 = 49 Û (a+c)(a-c) = 49 ị a+ c = 49 ị a = 25 Vậy tam giác cần dựng có số đo 3 cạnh a – c = 1 c = 24 là 7, 25, 24

Bài Tập Phương Trình Nghiệm Nguyên

Published on

1. BÀI TẬP PHƯƠNG TRÌNH NGHIỆM NGUYÊN Bài viết này tập hợp các bài tập để các bạn rèn luyện sau khi đã đọc xong các chuyên đề phương trình nghiệm nguyên: – Các phương pháp giải phương trình nghiệm nguyên, phần 1-3 – Phương trình nghiệm nguyên dạng đa thức – Các dạng phương trình nghiệm nguyên khác BÀI TẬP Bài 1: Tìm các số nguyên tố x,y,z thỏa mãn : xy+1=z Hướng dẫn: Vì x,y nguyên tố nên x,y≥2. Từ phương trình đã cho ta suy ra z≥5 và z lẻ (do z nguyên tố). Vì z lẻ nên x chẵn hay x=2. Khi đó, z=1+2y. Nếu y lẻ thì z chia hết cho 3 (loại). Vậy y=2. Đáp số : x=y=2vàz=5. Bài 2: Tìm tất cả các cặp số tự nhiên (n,z) thỏa mãn phương trình : 2n+122=z2-32 Hướng dẫn: Nếu n lẻ thì 2n≡−1 (mod 3). Từ phương trình đã cho ta suy ra z2≡−1 (mod 3), loại. Nếu n chẵn thì n=2m(m∈N) và phương trình đã cho trở thành: z2-22m=153 hay (z-2m)(z+2m)=153. Cho z+2m và z-2m là các ước của 153 ta tìm được m=2,z=13.

2. Đáp số : n=4,z=13. Bài 3: Tìm nghiệm nguyên dương của phương trình : x+23√−−−−−−−√=y√+z√ Hướng dẫn: Vì vai trò của x,y,z như nhau nên có thể giả sử y⩾z. Từ phương trình đã cho ta suy ra x+23√=y+z+2yz−−√. Suy ra: (x−y−z)2+43√(x−y−z)=4yz−12. (1) Vì 3√ là số vô tỉ nên từ (1) ta suy ra : x-y-z=4yz-12=0⇒yz=3⇒y=3,z=1 và x=y+z=4 Đáp số : phương trình có 2 nghiệm là (4; 3; 1) và (4; 1; 3) Bài 4: Tìm tất cả các số nguyên dương a,b,c đôi một khác nhau sao cho biểu thức : A = 1a+1b+1c+1ab+1bc+1ca nhận giá trị nguyên dương. Hướng dẫn: Ta có: A.abc=ab+bc+ca+a+b+c (1) Từ (1) ta CM được a,b,c cùng tính chẵn lẻ. Vì vau trò của a,b,c như nhau và a,b,c đôi một khác nhau nên có thể giả thiết a<b<c. Nếu a⩾3thì b⩾5,c⩾7 và A<1, loại. Suy ra a=1 hoặc a=2 Nếu a=1 thì b⩾3,c⩾5 do đó 1<A<3 suy ra A=2. Thay a=1,A=2 ta được: 2(b+c)+1=bc hay (b-2)(c-2)=5. Từ đó ta được b=3,c=7. Trường hợp a=2 xét tương tự. Đáp số : (2; 4; 14), (1; 3; 7) và các hoán vị của 2 bộ số này Bài 5: Tìm tất cả các bộ ba số tự nhiên không nhỏ hơn 1 sao cho tích của hai số bất kì cộng với

3. 1 chia hết cho số còn lại Hướng dẫn: Giả sử ba số đã cho là a⩾b⩾c⩾1. Ta có cab+1,abc+1,bac+1 Suy ra abc(ab+1)(ac+1)(bc+1) ⇒ab+bc+ca+1⋮ abc ⇒ab+bc+ca+1=k.abc,k∈Z+. (1) Vì ab+bc+ca+1⩽4abc nên k⩽4 Nếu k=4 thì a=b=c=1 (thỏa mãn) Nếu k=3 thì từ (1) ta suy ra 3abc⩽4ab suy ra c⩽1 Do đó c=1⇒a=2,b=1 Trường hợp k=2,k=1 được xét tương tự như trường hợp k=3 Đáp số : (1;1;1),(2;1;1),(3;2;1),(7;3;2) Bài 6: Tìm ba số nguyên dương đôi một khác nhau x,y,z thỏa mãn : x3+y3+z3=(x+y+z)2 Hướng dẫn: Vì vai trò của x,y,z như nhau nên có thể giả sử x<y<z Áp dụng bất đẳng thức x3+y3+z33⩾(x+y+z3)3 ∀x,y,z⩾0 ta suy ra x+y+z ⩽ 9 Dấu bằng không xảy ra vì x,y,z đôi một khác nhau Vậy x+y+z ⩽ 8 (1) Mặt khácx+y+z ⩾ 1 + 2 + 3 =6 (2) Từ (1), (2) ta suy ra x ∈{6,7,8} Từ đây kết hợp với phương trình ban đầu ta tìm được x,y,z

4. Đáp số : (1, 2, 3) và các hoán vị của bộ ba số này Bài 7: Tìm các số nguyên không âm x,y sao cho : x2=y2+y+1−−−−√ Hướng dẫn: Nếu y=0 thì x=1 Nếu y ⩾ 1 thì từ phương trình đã cho ta suy ra y<x<y+1, vô lí Bài 8: Tìm tất cả các cặp số nguyên (x,y) thỏa mãn 12×2+6xy+3y2=28(x+y) Hướng dẫn: Đáp số (x,y)=(0,0);(1,8);(−1,10) Phương trình : 12×2+6xy+3y2=28(x+y)(∗) Ta sẽ đánh giá miền giá trị của `x`: Từ (*) suy ra: x2=−3(x+y)2+28(x+y)=142 3−3[(x+y)−143]2⩽1963⇒x2⩽7⇒x2∈{0,1,4} Bài 9: Tìm x,y,z∈Z: 2×3−7×2+8x−2=y 2y3−7y2+8y−2=z 2z3−7z2+8z−2=x Hướng dẫn: Đáp số : x=y=z=1 hoặc x=y=z=2 Đặt ƒ(t)=2t3−7t2+8t−2 và sử dụng tính chất ƒ(a)-ƒ(b)⋮(a−b)∀a≠b

5. Bài 10: Tìm x,y ∈Z:x√+y√=2001−−−−√ (*) Hướng dẫn: Điều kiện x,y⩾0 Từ (*) suy ra y√=2001−−−−√−x√. Bình phương hai vế ta được y=2001+x−22001.x−−−−−−√⇒2001.x−−−−−−√∈N Vì 2001 = 3 × 667, ta lại có 3 và 667 là các số nguyên tố nên x=3×667×a2=2001.a2 (trong đó a∈N) Lập luận tương tự ta có ^y =^ 2001.b2(b∈N) Thay x=2001a2,y=2001b2 vào (*) và rút gọn ta suy ra : a+b=1 Từ đó có hai nghiệm : (x;y)=(2001;0) hoặc (0;2001) Bài 11: Tìm n nguyên dương sao cho phương trình x3+y3+z3=nx2y2z2 có nghiệm nguyên dương. Với các giá trị vừa tìm được của n, hãy giải phương trình trên. Hướng dẫn: Đáp số: n=1 hoặc n=3 Bài 12: Chứng minh rằng phương trình x2+y5=z3 có vô số nghiệm nguyên (x,y,z) thỏa mãn xyz≠0 Hướng dẫn: Dễ thấy bộ các bộ ba sau là nghiệm của phương trình đã cho: (3; -1; 2) và (10; 3; 7) Ta thấy nếu (x;y;z) là nghiệm của phương trình đã cho thì (k15x,k6y,k10z) cũng là nghiệm của phương trình đã cho. Từ đó có điều phải chứng minh Bài 13:

6. Chứng minh các phương trình sau không có nghiệm nguyên: )3×2−4y2=13b)19×2+28y2=2001c)x2=2y2−8y+3d)x5−5×3+4x=24(5y+1)e)3×5 −x3+6×2−18x=2001 Hướng dẫn: Dùng phương pháp xét số dư của từng vế. Từ đó ta thấy số dư của hai vế phương trình sẽ không bằng nhau. Điều đó dẫn tới các phương trình vô nghiệm. Bài 14: Tìm ba số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng. Hướng dẫn: xyz=2(x+y+z) Giải sử x⩽y⩽z. Ta có xyz=2(x+y+z)⩽2.3z=6z Suy ra xy⩽6, thử chọn lần lượt xy=1;2;3;4;5;6. Đáp số: (1;3;8),(1;4;5),(2;2;4) và các hoán vị. Bài 15: Tìm bốn số nguyên dương sao cho tổng của chúng bằng tích của chúng. Hướng dẫn: x+y+z+t=xyzt Giả sử z⩾t⩾z⩾y⩾x. Ta có xyzt=x+y+z+t⩽4t nên xyz⩽4. Thử chọn lần lượt xy=1;2;3;4. Đáp số: 1 ; 1 ; 2 ; 4. Bài 16: Tìm các nghiệm nguyên dương của các phương trình: )x2+xy+y2=2x+yb)x2+xy+y2=x+yc)x2−3xy+3y2=3yd)x2−2xy+5y2=y+1 Hướng dẫn:

9. Ba người đi câu được một số cá. Trời đã tối và mọi người đều mệt lả, họ vứt cá trên bờ sông, mỗi người tìm một nơi lăn ra ngủ. Người thứ nhất thức dậy, đếm số cá thấy chia 3 thừa 1 con, bèn vứt 1 con xuống sông và xách 13về nhà. Người thứ hai thức dậy, tưởng hai bạn mình còn ngủ, đếm số cá vứt 1 con xuống sông và xách 13về nhà. Người thứ 3 thức dậy , tưởng mình dậy sớm nhất, lại vứt 1 con xuống sông và mang 13về nhà. Tính số cá 3 chàng trai câu được? biết rằng họ câu rất tồi….. Hướng dẫn: 23{23[23(x−1)−1]−1}=y 8x−27y=38(x,y∈N) x=−2+27t,y=−2+8t ⇒x=25,y=6 (cho t=1) Bài 25: Tìm điều kiện cần và đủ cho số k để phương trình có nghiệm nguyên. x2-y2=k Hướng dẫn: Nếu x2-y2=k có nghiệm nguyên thì k≠4t+2 Xét trường hợp k chẵn k lẻ Bài 26: Chứng minh rằng phương trình : 1x+1y+1z=11991 chỉ có một số hữu hạn nghiệm nguyên dương. Hướng dẫn: Gỉả sử 0<x≤y≤z. Ta có 1x+1y+1z+1t=11991⩽3x Suy ra 1991<x≤3.1991 nên x có hữu hạn giá trị Với mỗi giá trị của x có y≤2.1991xx−1991≤22.1991 suy ra giá trị tương ứng của z với mỗi gíá trị của x,y Bài 27: Tìm nghiệm nguyên dương của phương trình: )1x+1y=114b)1x+1y=1z Hướng dẫn: a) Xét 1x+1y=1a (a nguyên dương) Với x≠0,y≠0, phương trình tương đương ax+ay=xy hay (x−a)(y−a)=a2. Có tất cả 2m−1 nghiệm, với m là các ước số lớn hơn 0 của a2. Với a=14,a2=196 Có 9 ước số dương và phương trình có 17 nghiệm. Bài 28: Tìm nghiệm nguyên dương của phương trình 1!+2!+……+x!=y2

10. Hướng dẫn: Thử trực tiếp, thấy x<5, Phương trình có nghiệm, tìm nghiệm Chứng minh với x≥5 phương trình vô nghiệm Bài 29: Tìm nghiệm nguyên của phương trình : xy+3x-5y=−3 2×2-2xy-5x+5y=−19 Hướng dẫn: a) xy+3x−5y=−3⇔(x−5)(y+3)=−18 Đáp số : (x;y)=(4;15),(−13;−2),(3;6),(14;−5),(2;3), (11,−6),(8;−9),(23−4),(6;−21),(−1;0),(−4;−1),(7;−13) b) Tương tự Bài 30: Tìm nghiệm nguyên của phương trình : 4x+11y=4xy x2-656xy-657y2=1983 Hướng dẫn: 4x+11y=4xy⇔(4x−11)(y−1)=1 Xét 4 hệ phương trình Đáp số: (x;y)(0;0),(3;12) b) x2−656xy−657y2=1983⇔(x+y)(x−657y)=1983 Đáp số : (x;y)=(−4;−1),(4;−1),(−660;−1),(660;1) Bài 31: Tìm các cặp số nguyên dương (x;y) thỏa mãn phương trình : 7x-xy-3y=0 y2=x2+12x-1923 Hướng dẫn: 7x−3y−xy=0⇔(x+3)(7−y)=21 Chú ý rằng x∈Z+nên x+3≥4, do đó chỉ có hai phuong trình Đáp số : (4;4),(8,16) Bài 32: Tìm nghiệm nguyên của phương trình a) x(x+1)(x+7)(x+8)=y2 b) y(y+1)(y+2)(y+3)=x2 Hướng dẫn: x(x+1)(x+7)(x+8)=y2⇔(x2+8x+7)=y2

11. Đặt x2+8x=z (z∈Z) Ta có : z(z+7)=y⇔(2z+7+2y)(2z+7−2y)=49 Đáp số : (0;0),(−1;0),(1;12),(1;−12),(−9;12), (−9;−12),(−8;0),(−7;0),(−4;12),(−4;12)

Chuyên Đề: Phương Trình Lớp 8

Phần IPhương trình bậc nhất một ẩnI. Khái niệm về phương trình. Phương trình bậc nhất một ẩn.1. Ví dụVí dụ 1: Giải phương trình: a2x + b = a(x + b) Giải: a2x + b = a(x + b) a2x + b = ax + ab a2x – ax = ab -b ax(a – 1) = b(a -1) (1)Nếu thì phương trình có một nghiệm duy nhất Nếu a = 1 thì (1) có dạng 0x = 0, phương trình nghiệm đúng với mọi x.Nếu a = 0 thì (1) có dạng 0x = -b, phương trình nghiệm đúng với mọi x khi b = 0, phương trình vô nghiệm khi Ví dụ 2: Giải phương trình:

Giải: Phương trình trên có hệ số bằng chữ ở mẫu thức. Điều kiện để phương trình có nghĩa là Với điều kiện này, phương trình đã cho tương với (a+x)(a+1) – (a-x)(a – 1) = 3aSau khi biến đổi ta được: 2ax = a (1)Nếu a 0, phương trrình có nghiệm duy nhất

Nếu a = 0, phương trrình (1) trở thành 0x = 0, nghiệm đúng với mọi x.

Kết luận: Nếu phương trình có nghiệm duy nhất Nếu a = 0, phương trình nghiệm đúng với mọi x Nếu a = phương trình vô nghiệm.Bài tập vân dụngBài 1: Tìm giá trị của m sao cho phương trình:a) 5(m + 3x)(x + 1) – 4(1 + 2x) = 80 có nghiệm x = 2.b) 3(2x + m)(3x + 2) – 2(3x + 1)2 = 43 có nghiệm x = 1.Bài 2: Giải các phương trình sau:ab) c) d) II. Phương trình chứa ẩn ở mẫu thức.1. Ví dụVí dụ 3: Giải phương trình:

Giải: Nghiệm của phương trình nếu có, phải thoả mãn điều kiện Với điều kiện đó, phương trình tương đương với:3(4x + 1) = 2(1 – 4x) + (8 + 6x) 14x = 7 x = Giá trị này thoả mãn điều kiện trên. Vậy phương trình có nghiệm duy nhất x = Ví dụ 4: Giải phương trình:

Giải: Điều kiện của nghiệm số, nếu có, là Với điều kiện đó, phương trình tương đương với:3(3 – 5x) + 2(5x – 1) = 4Giải phương trình này, ta được x = Giái trị này không thảo mãn điều kiện. Vậy phương trình đã cho vô nghiệm.Bài tập vận dụngBài 3: Giải các phương trình sau:ab) c) d) e) Bài 4: Với giá trị nào của a thì phương trình sau có một nghiệm duy nhất?

III. Phương trình chứa ẩn trong dấu giá trị tuyệt đốiKhi giải các phương trình mà ẩn nằm trong dấu giái trị tuyệt đối, để bỏ dấu giá trị tuyệt đối ta xét từng khoảng giá trị của biến. Cần nhớ và năm vững lý thuyết sau:1. Định nghĩa giá trị tuyệt đối:

2. Định lý về dấu của nhị thức bậc nhất ax

Bạn đang đọc nội dung bài viết Chuyên Đề “Phương Trình Nghiệm Nguyên” trên website Asianhubjobs.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!