Cập nhật nội dung chi tiết về Chuyên Đề Vecto Trong Không Gian Quan Hệ Vuông Góc mới nhất trên website Asianhubjobs.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất.
Nhóm thuvientoan.net xin gửi đến các bạn đọc tài liệu Chuyên đề vecto trong không gian quan hệ vuông góc.
Tài liệu gồm có 99 trang, tóm tắt các kiến thức SGK cần nắm và hướng dẫn giải các dạng toán chuyên đề vectơ trong không gian, quan hệ vuông góc thuộc chương trình Hình học 11 chương 3.
Khái quát nội dung tài liệu chuyên đề vectơ trong không gian, quan hệ vuông góc: §1. VECTƠ TRONG KHÔNG GIAN VÀ SỰ ĐỒNG PHẲNG CỦA CÁC VECTƠ. A. KIẾN THỨC CẦN NẮM I. Các định nghĩa. 1. Vectơ, giá và độ dài của vectơ. 2. Hai vectơ bằng nhau, vectơ_không. II. Phép cộng và phép trừ vectơ. 1. Định nghĩa. 2. Tính chất. 3. Các quy tắc cần nhớ khi tính toán. a. Quy tắc ba điểm. b. Quy tắc hình bình hành. c. Tính chất trung điểm, trọng tâm của tam giác. d. Quy tắc hình hộp. III. Phép nhân vectơ với một số. IV. Điều kiện đồng phẳng của ba vectơ. 1. Khái niệm về sự đồng phẳng của ba vectơ trong không gian. 2. Định nghĩa. 3. Điều kiện để ba vectơ đồng phẳng. 4. Phân tích(biểu thị) một vectơ theo ba vectơ không đồng phẳng. B. CÁC DẠNG BÀI TẬP Dạng 1. Xác định các yếu tố của vectơ. Dạng 2. Chứng minh các đẳng thức vectơ. Dạng 3. Chứng minh ba vectơ a, b, c đồng phẳng. C. BÀI TẬP TRẮC NGHIỆM
§2. HAI ĐƯỜNG THẲNG VUÔNG GÓC. A. KIẾN THỨC CẦN NẮM I. Tích vô hướng của hai vectơ trong không gian. 1. Góc giữa hai vectơ trong không gian. 2. Tích vô hướng của hai vectơ trong không gian. II. Vectơ chỉ phương của đường thẳng. III. Góc giữa hai đường thẳng. IV. Hai đường thẳng vuông góc. B. CÁC DẠNG BÀI TẬP Dạng 1: Tính góc giữa hai đường thẳng. Dạng 2. Chứng minh hai đường thẳng vuông góc. C. BÀI TẬP TRẮC NGHIỆM §3. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG. A. KIẾN THỨC CẦN NẮM I. Định nghĩa. II. Điều kiện để đường thẳng vuônmg góc với mặt phẳng. III. Tính chất. IV. Liên hệ giữa quan hệ song song và quan hệ vuông góc của đường thẳng và mặt phẳng. V. Phép chiếu vuông góc và định lí ba đường vuông góc. 1. Phép chiếu vuông góc. 2. Định lí ba đường vuông góc. 3. Góc giữa đường thẳng và mặt phẳng. B. CÁC DẠNG BÀI TẬP Dạng 1. Chứng minh đường thẳng vuông góc với mặt phẳng. Dạng 2. Chứng minh hai đường thẳng vuông góc. Dạng 3. Tìm thiết diện tạo bởi mặt phẳng qua một điểm và vuông góc với một đường thẳng cho trước. Dạng 4. Xác định góc giữa đường thẳng d và mặt phẳng α. C. BÀI TẬP TRẮC NGHIỆM
§4. HAI MẶT PHẲNG VUÔNG GÓC. A. KIẾN THỨC CẤN NẮM I. Góc giữa hai mặt phẳng. 1. Định nghĩa. 2. Cách xác định góc giữa hai mặt phẳng cắt nhau. 3. Diện tích hình chiếu của một đa giác. II. Hai mặt phẳng vuông góc. III. Hình lăng trụ đứng, hình hộp chữ nhật, hình lập phương. IV. Hình chóp đều và hình chóp cụt đều. B. CÁC DẠNG BÀI TẬP Dạng 1. Xác định góc giữa hai mặt phẳng. Dạng 2. Chứng minh hai mặt phẳng vuông góc. Dạng 3. Chứng minh đường thẳng vuông góc với mặt phẳng. Dạng 4. Thiết diện tạo bởi mặt phẳng vuông góc với mặt phẳng cho trước. C. BÀI TẬP TRẮC NGHIỆM
§5. KHOẢNG CÁCH. A. KIẾN THỨC CẦN NẮM I. Khoảng cách từ một điểm đền một đường thẳng, đến một mặt phẳng. 1. Khoảng cách từ một điểm M đến một đường thẳng ∆. 2. Khoảng cách từ một điểm M đến một mặt phẳng (P). II. Khoảng cách giữa hai đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song. 1. Khoảng cách giữa đường thẳng và mặt phẳng song song. 2. Khoảng cách giữa hai mặt phẳng song song. III. Đường vuông góc chung và khoảng cách giữa hai đường thẳng chéo nhau. B. CÁC DẠNG BÀI TẬP Dạng 1. Khoảng cách từ một điểm đến một mặt phẳng. Dạng 2: Xác định khoảng cách giữa hai đường thẳng chéo nhau. C. BÀI TẬP TRẮC NGHIỆM
….
Like fanpage của chúng tôi để cập nhật những tài liệu mới nhất: https://bit.ly/3g8i4Dt.
THEO THUVIENTOAN.NET
Giải Bài Tập Toán 11 Câu Hỏi Ôn Tập Chương 3: Vectơ Trong Không Gian. Quan Hệ Vuông Góc Trong Không
Giải bài tập Toán 11 câu hỏi ôn tập chương 3: Vectơ trong không gian. Quan hệ vuông góc trong không gian
Bài tập Toán lớp 11 trang 120 SGK
Giải bài tập Toán 11 Hình học câu hỏi ôn tập chương 3
VnDoc.com xin giới thiệu tới các bạn học sinh tài liệu: , tài liệu sẽ giúp các bạn học sinh rèn luyện cách giải nhanh các bài tập Toán trong SGK. Mời các bạn và thầy cô tham khảo.
Bài 1 (trang 120 SGK Hình học 11): Nhắc lại định nghĩa vectơ không gian.
Cho hình lăng trụ tam giác ABC.A’B’C’. Hãy kể tên những vectơ bằng vectơ có điểm đầu và điểm cuối là đỉnh của hình lăng trụ.
Lời giải:
Vectơ trong không gian là một đoạn thẳng có định hướng, tức là một đoạn thẳng đã được chỉ rõ điểm đầu và điểm cuối.
Vì các cạnh bên của hình lăng trụ là các đoạn thẳng song song và bằng nhau nên các vectơ bằng vectơ và có điểm đầu và điểm cuối là đỉnh của hình lăng trụ là: các vector BB’, CC’, DD’.
Bài 2 (trang 120 SGK Hình học 11): Trong không gian cho ba vectơ a, b và c đều khác vectơ 0 . Khi nào ba véc tơ đó đồng phẳng?
Lời giải:
Thỏa mãn:
– Giá của 3 vector đều song song với mặt phẳng (P) nên chúng đồng phẳng
– Khi ba vectơ có giá của chúng cùng song song với một mặt phẳng
Bài 3 (trang 120 SGK Hình học 11): Trong không gian hai đường thẳng không cắt nhau có thể vuông góc với nhau không? Giả sử hai đường thẳng a và b lần lượt có vectơ chỉ phương là vector u và vector v. Khi nào ta có kết luận a và b vuông góc với nhau?
Lời giải:
Bài 4 (trang 120 SGK Hình học 11): Muốn chứng minh đường thẳng a vuông góc với mặt phẳng (α) có cần chứng minh a vuông góc với mọi đường thẳng của (α) hay không?
Lời giải:
Không cần chứng minh a vuông góc với mọi đường thẳng của mặt phẳng.
Ta có thể chọn một trong số những cách sau để chứng minh đường thẳng vuông góc với mặt phẳng
– Cách 1: Chứng minh đường thẳng d vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng
– Cách 2: Sử dụng định lí: “Nếu hai mặt phẳng vuông góc với nhau thì bất kì đường thẳng nào nằm trong mặt phẳng này và vuông góc với giao tuyến thì cũng vuông góc với mặt phẳng kia”.
– Cách 3: Sử dụng định lí: ” Nếu hai mặt phẳng phân biệt cùng vuông góc với mặt phẳng thứ 3 thì giao tuyến của chúng cũng sẽ vuông góc với mặt phẳng đó”.
Bài 5 (trang 120 SGK Hình học 11): Nhắc lại nội dung định lí ba đường thẳng vuông góc
Lời giải:
Cho đường thẳng a không vuông góc với mặt phẳng (P) và đường thẳng b nằm trong (P) . Khi đó, điều kiện cần và đủ để b vuông góc với a là b vuông góc với hình chiếu a’ của a trên (P).
Bài 6 (trang 120 SGK Hình học 11): Nhắc lại định nghĩa:
a) Góc giữa đường thẳng và mặt phẳng.
b) Góc giữa hai mặt phẳng.
Lời giải:
a) Định nghĩa: Góc giữa đường thẳng và mặt phẳng.
Cho đường thẳng d cắt mặt phẳng (α) tại điểm O và d không vuông góc với (α). Góc giữa đường thẳng d và mặt phẳng (α) là góc tạo bởi đường thẳng d và hình chiếu vuông góc góc d’ của d trên mặt phẳng (α), kí hiệu góc (d,α).
– Nếu d vuông góc góc với (α) ta qui ước góc (d,α) = 90 o.
– Nếu d
b) Định nghĩa: Góc giữa hai mặt phẳng
Giả sử hai mặt phẳng (α) và (β) cắt nhau theo giao tuyến c. Từ điểm I bất kì trên c ta dựng trong (α) đường thẳng a vuông góc với c và dựng trong (β) đường thẳng b vuông góc với c. Ta gọi góc giữa hai đường a và b là góc giữa hai mặt phẳng (α) và (β). Như vậy góc giữa hai mặt phẳng (α) và (β) luôn có số đo bé hơn hoặc bằng 90 o.
*Nếu hai mặt phẳng song song hoặc trùng với nhau thì ta nói rằng góc giữa hai mặt phẳng đó bằng 0 o. Góc giữa hai mặt phẳng (α) và (β) được kí hiệu là (α, β), ta có 0 o ≤ (α, β) ≤ 90 o.
Bài 7 (trang 120 SGK Câu hỏi Hình học 11): Muốn chứng minh mặt phẳng (α) vuông góc với mặt phẳng (β) ta có thể?
Lời giải:
Chứng minh (α) chứa một đường thẳng vuông góc với (β) hoặc (β) chứa một đường thẳng vuông góc với (α).
Hoặc chứng minh góc giữa (α) và (β) bằng 90 o.
Bài 8 (trang 120 SGK Hình học 11): Hãy nêu cách tính khoảng cách:
a) Từ một điểm đến một đường thẳng ;
b) Từ đường thẳng a đến mặt phẳng (α) song song với a ;
c) Giữa hai mặt phẳng song song.
Lời giải:
a) Để tính khoảng cách từ điểm O đến đường thẳng Δ không đi qua O, ta xác định mặt phẳng (O; Δ) và trong mặt phẳng này kẻ OH ⊥ Δ. Độ dài OH chính là khoảng cách từ O đến Δ.
b) Để tính khoảng cách giữa đường thẳng a và mp(P) song song với (P), ta lấy một điểm M bất kì thuộc đường thẳng a. Khoảng cách MN từ điểm M đến mp(P) chính là khoảng cách giữa đường thẳng và mp(P) song song với a.
c) Để tính khoảng cách giữa hai mp(P) và (P’) song song với nhau, ta lấy một điểm M thuộc (P) và tìm khoảng cách MH từ điểm M đến mp(P’).
Bài 9 (trang 120 SGK Hình học 11): Cho a và b là hai đường thẳng chéo nhau. Có thể tính khoảng cách giữa hai đường thẳng chéo nhau này bằng những cách nào?
Lời giải:
Có 2 cách để tính khoảng cách giữa hai đường thẳng chéo nhau
Bài 10 (trang 120 SGK Hình học 11): Chứng minh rằng tập hợp các điểm cách đều ba đỉnh của một tam giác ABC là đường vuông góc với mặt phẳng (ABC) và đi qua tâm đường tròn ngoại tiếp tam giác ABC.
Lời giải:
– Lấy một điểm M bất kì trong không gian sao cho MA = MB = MC. Từ M kẻ MO vuông góc với mp(ABC). Các tam giác vuông MOA, MOB, MOC bằng nhau, cho ta OA = OB = OC.
– Suy ra O là tâm đường tròn ngoại tiếp tam giác ABC. Vậy các điểm M cách đều ba đỉnh của tam giác ABC nằm trên đường thẳng d đi qua tâm O của đường tròn ngoại tiếp tam giác ABC và vuông góc với mp(ABC). Ngược lại, lấy một điểm M’ ∈ d, nối M’A, M’B, M’C.
– Do M’O chung và OA = OB = OC nên các tam giác vuông M’OA, M’OB, M’OC bằng nhau, cho ta M’A = M’B = M’C.
– Tức là điểm M’ cách đều ba đỉnh A, B, C của tam giác ABC.
– Kết luận: Tập hợp các điểm cách đều ba đỉnh của tam giác ABC là đường thẳng vuông góc với mp(ABC) và đi qua tâm của đường tròn ngoại tam giác ABC.
Giải Sbt Toán 12 Bài 1: Hệ Tọa Độ Trong Không Gian
Hướng dẫn làm bài
=(−4;−2;3), =(−9;2;1)
Bài 3.2 trang 102 sách bài tập (SBT) – Hình học 12
Trong không gian Oxyz cho vecto =(1;−3;4)
a) Tìm y 0 và z 0 để cho vecto =(2;y 0;z 0) cùng phương với
Hướng dẫn làm bài:
a) Ta biết rằng và cùng phương khi và chỉ khi =k với k là một số thực. Theo giả thiết ta có:=(x 0;y 0;z 0) với x 0 = 2. Ta suy ra k=1/2 nghĩa là l=1/2x 0
Vậy ta có =(2;−6;8)
b) Theo giả thiết ta có =−2
Do đó tọa độ của là: = (-2; 6; -8)
Bài 3.3 trang 102 sách bài tập (SBT) – Hình học 12
Trong không gian Oxyz cho điểm M có tọa độ (x 0; y 0; z 0). Tìm tọa độ hình chiếu vuông góc của điểm M trên các mặt phẳng tọa độ (Oxy), (Oyz), (Ozx).
Hướng dẫn làm bài:
Gọi M’, M”, M”’ lần lượt là hình chiếu vuông góc của điểm M trên các mặt phẳng (Oxy), (Oyz), (Ozx).
Bài 3.4 trang 102 sách bài tập (SBT) – Hình học 12
Cho hai bộ ba điểm:
a) A = (1; 3; 1), B = (0; 1; 2), C = (0; 0; 1)
b) M = (1; 1; 1), N = (-4; 3; 1), P = (-9; 5; 1)
Hỏi bộ nào có ba điểm thẳng hàng?
Hướng dẫn làm bài:
a) Ta có =(−1;−2;1)
=(−1;−3;0)
Giả sử ta có =k, khi đó k.(−1)=−1;k.(−3)=−2;k.(0)=1
Ta không tìm được số k nào thỏa mãn đồng thời cả ba đẳng thức trên. Vậy ba điểm A, B, C không thẳng hàng.
b) Ta có: =(−5;2;0) và =(−10;4;0). Hai vecto và thỏa mãn điều kiện: =k với k=1/2 nên ba điểm M, N, P thẳng hàng.
Bài 3.5 trang 102 sách bài tập (SBT) – Hình học 12
Trong không gian Oxyz, hãy tìm trên mặt phẳng (Oxz) một điểm M cách đều ba điểm A(1; 1; 1), B(-1; 1; 0), C(3; 1; -1).
Hướng dẫn làm bài:
Điểm M thuộc mặt phẳng (Oxz) có tọa độ là (x; 0; z), cần phải tìm x và z. Ta có:
Theo giả thiết M cách đều ba điểm A, B, C nên ta có MA 2 = MB 2 = MC 2
Từ đó ta tính được M(5/6;0;−7/6)
Bài 3.6 trang 102 sách bài tập (SBT) – Hình học 12
Cho hình tứ diện ABCD. Chứng minh rằng:
Hướng dẫn làm bài:
a) Ta có:
Do đó: +=+ vì =−
b) Vì =+và =+ nên =++
Bài 3.7 trang 102 sách bài tập (SBT) – Hình học 12
ho hình tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, BD, AD, BC. Chứng minh rằng:
Hướng dẫn làm bài:
a) Ta có MPNQ là hình bình hành vì
==1/2 và =PN →=1/2.
Do đó =MQ →+=/2+/2 hay 2=+ (1)
Vì =
Bài 3.8 trang 102 sách bài tập (SBT) – Hình học 12
Trong không gian cho ba vecto tùy ý ,,. Gọi =−2, =3−, =2−3.
Hướng dẫn làm bài:
Muốn chứng tỏ rằng ba vecto , , đồng phẳng ta cần tìm hai số thực p và q sao cho =p+q.
2c →−3=p(−2b →)+q(3−)
{3+p=0;3q−2p=0;q+2=0⇒p=−3;q=−2
Như vậy ta có: =−3−2 nên ba vecto , v →, đồng phẳng.
Bài 3.9 trang 103 sách bài tập (SBT) – Hình học 12
Trong không gian Oxyz cho một vecto tùy ý khác vecto . Gọi α,β,γ là ba góc tạo bởi ba vecto đơn vị ,, trên ba trục Ox, Oy, Oz và vecto . Chứng minh rằng: cos 2α+cos 2β+cos 2 γ=1
Hướng dẫn làm bài:
Bài 3.10 trang 103 sách bài tập (SBT) – Hình học 12
Cho hình tứ diện ABCD.
a) Chứng minh hệ thức:
+.+.. = 0
b) Từ hệ thức trên hãy suy ra định lí: “Nếu một hình tứ diện có hai cặp cạnh đối diện vuông góc với nhau thì cặp cạnh đối diện thứ ba cũng vuông góc với nhau.”
Hướng dẫn làm bài:
a) Ta có
.=(−)=.−. (1)
.=(−)=.−. (2)
.=(−)=.−. (3)
Lấy (1) + (2) + (3) ta có hệ thức cần chứng minh là:
+.+.. = 0
b) Từ hệ thức trên ta suy ra định lí: “Nếu tứ diện ABCD có AB⊥CD,AC⊥DB, nghĩa là . =0 và . =0 thì . = 0 và do đó AD⊥BC.”
Giải Bài Tập Trang 42 Sgk Toán 3: Góc Vuông, Góc Không Vuông Giải Bài Tập Toán Lớp 3
Giải bài tập trang 42 SGK Toán 3: Góc vuông, góc không vuông Giải bài tập Toán lớp 3
Giải bài tập trang 42 SGK Toán 3: Góc vuông, góc không vuông
Giải bài tập trang 42 SGK Toán 3: Góc vuông, góc không vuông giúp các em có thể hiểu được khái niệm về góc vuông, góc không vuông, cách dùng eke để nhận biết góc vuông, góc không vuông và để vẽ góc vuông trong trường hợp đơn giản.
Giải bài tập trang 39, 40 SGK Toán 3: Tìm số chia – Luyện tập tìm số chia
Hướng dẫn giải bài góc vuông, góc không vuông (bài 1, 2, 3, 4 SGK Toán lớp 5 trang 42)
Bài 1: (Hướng dẫn giải bài tập số 1 SGK)
a) Dùng eke để nhận biết góc vuông của hình bên rồi đánh dấu góc vuông (theo mẫu)
b) Dùng eke để vẽ:
Góc vuông đỉnh O, cạnh OA, OB, (theo mẫu)
Góc vuông đỉnh M, cạnh MC, MD (cắt hình)
a) Dùng eke để kiểm tra góc vuông, sau đó đánh dấu góc vuông như sau:
b) Chấm điểm O, đặt đỉnh góc vuông trùng với đỉnh O, vẽ cạnh OA, OB theo cạnh của eke.
Chấm điểm M, đặt đỉnh góc vuông trùng với đỉnh M, vẽ cạnh MC, MD theo cạnh của eke.
a) Nêu tên đỉnh và cạnh góc vuông
b) Nêu tên đỉnh và cạnh các góc không vuông.
Dùng eke kiểm tra, ta có:
Các góc vuông là:
+ Góc đỉnh A, cạnh AE, AD
+ Góc đỉnh D, cạnh DM, DN
+ Góc đỉnh G, cạnh GX, GY
Các góc không vuông là:
+ Góc đỉnh B, cạnh BH, BG
+ Góc đỉnh C, cạnh CK, CI
+ Góc đỉnh E, cạnh EP, EQ.
Bài 3: (Hướng dẫn giải bài tập số 3 SGK)
Trong hình tứ giác MNPQ, góc nào là góc vuông? Góc nào là góc không vuông?
Dùng eke kiểm tra ta có:
Góc vuông là:
+ Góc đỉnh M, cạnh MN, MQ.
+ Góc đỉnh Q, cạnh QP, QM.
Các góc không vuông là:
+ Góc đỉnh N, cạnh NM, NP.
+ Góc đỉnh P, cạnh PQ, PN.
Bài 4: (Hướng dẫn giải bài tập số 4 SGK)
Khoanh tròn vào chữ đặt trước câu trả lời đúng:
Số góc vuông trong hình bên là:
A. 1
B. 2
C. 3
D. 4
Khoanh tròn vào D: D. 4.
Bạn đang đọc nội dung bài viết Chuyên Đề Vecto Trong Không Gian Quan Hệ Vuông Góc trên website Asianhubjobs.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!