Đề Xuất 4/2023 # Đạo Hàm Của Hàm Nhiều Biến Số # Top 4 Like | Asianhubjobs.com

Đề Xuất 4/2023 # Đạo Hàm Của Hàm Nhiều Biến Số # Top 4 Like

Cập nhật nội dung chi tiết về Đạo Hàm Của Hàm Nhiều Biến Số mới nhất trên website Asianhubjobs.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất.

Hàm nhiều biến số có ứng dụng rất rộng rãi trong các bài toán học máy vì đa số các các thuộc tính của hiện tượng ta theo dõi không phải chỉ có 1 mà rất nhiều tham số. Các tham số này được liên kết với nhau một cách đặc biệt bởi các hàm số khác nhau để có thể đưa ra được các kết quả mong muốn. Nên việc tìm hiểu về hàm nhiều biến là rất cần thiết để có thể hiểu được các lý thuyết của học máy. $$ mathsf{D} subset mathbb{R}^n, f: mathsf{D} mapsto mathbb{R} $$ Hay: $$ (x_1, x_2, …, x_n) mapsto f(x_1, x_2, …, x_n) in mathbb{R} $$

Hay biểu diễn dưới dạng véc-tơ: $$ [x]_n in mathbb{R}^n mapsto f(x) in mathbb{R} $$

Ví dụ, cho $ x, y in mathbb{R} $ và khi đó ánh xạ $ z = f(x, y) = x^2 + y^2 $ gọi là hàm số của biến $ x, y $.

Khi làm việc với các bài toán học máy đầu ra của ta có thể không phải là một số mà là 1 tập các số nên ta thường xuyên phải làm việc với các hàm nhiều biến dạng mở rộng kiểu này. Tập các số đầu ra này ta có thể biểu diễn dưới dạng một véc-tơ, hay nói cách khác hàm nhiều biến của ta sẽ cho kết quả là một véc-tơ. Những hàm như vậy được gọi là hàm véc-tơ $ f: mathbb{R}^n mapsto mathbb{R}^m $. Ví dụ: $$ f(x, y) = begin{bmatrix} x^2 + sin(y) cr 2xy + y^2 end{bmatrix} $$

Để tiện giải thích và minh hoạ, trong bài này tôi sẽ đề cập tới trường hợp hàm của ta có 2 biến số. Tuy nhiên các tính chất, phép toán và phương pháp làm việc có thể mở rộng ra cho các hàm nhiều biến số hơn.

2. Đạo hàm riêng

Đạo hàm riêng theo 1 biến của một hàm số là đạo hàm theo biến đó với giả thuyết rằng các biến khác là hằng số. Cụ thể, cho hàm số $ f(x, y) $ và một điểm $ M(x_0, y_0) $ thuộc tập xác định của hàm, khi đó đạo hàm theo biến $ x $ tạo điểm $ M $ được gọi là đạo hàm riêng của $ f $ theo $ x $ tại $ M $. Lúc này $ y $ sẽ được cố định bằng giá trị $ y_0 $ và hàm của ta có thể coi là hàm 1 biến của biến $ x $.

Đạo hàm riêng của $ f $ theo $ x $ lúc này sẽ được kí hiệu là: $ f_x^{prime}(x_0, y_0) $ hoặc $displaystyle frac{partial{f(x_0, y_0)}}{partial{x}} $, còn đạo hàm theo biến $ y $ được biểu diễn tương tự: $ f_y^{prime}(x_0, y_0) $ hoặc $displaystyle frac{partial{f(x_0, y_0)}}{partial{y}} $.

Với tôi thì tôi thích biểu diễn dưới dạng $ f_x^{prime} $ vì dễ nhìn và không bị nhầm lẫn với phân số.

Ví dụ: $ f(x, y) = x^2y + sin(y) $ sẽ có đạo hàm $ f_x^{prime} = 2xy $ và $ f_y^{prime} = x^2 + cos(y) $.

Còn $displaystyle f(x, y) = begin{bmatrix} x^2 + sin(y) cr 2xy + y^2 end{bmatrix} $ có đạo hàm là $displaystyle f_x^{prime} = begin{bmatrix} 2x & 2y end{bmatrix} $ và $displaystyle f_y^{prime} = begin{bmatrix} cos(y) & 2x + 2y end{bmatrix} $

Một cách hình thức đạo hàm riêng tại điểm $ M(x_0, y_0) $ theo biến $ x $ được tính toán như sau:

$$ f_x^{prime}(x_0, y_0) = limlimits_{triangle_x rightarrow 0} frac{triangle_xf}{triangle_x} = limlimits_{triangle_x rightarrow 0} frac{f(x_0 + triangle_x, y_0) – f(x_0, y_0)}{triangle_x} $$

Theo biến $ y $:

$$ f_y^{prime}(x_0, y_0) = limlimits_{triangle_y rightarrow 0} frac{triangle_yf}{triangle_y} = limlimits_{triangle_y rightarrow 0} frac{f(x_0, y_0 + triangle_y) – f(x_0, y_0)}{triangle_y} $$ begin{cases} displaystyle{frac{partial{f}}{partial{x}}} = 2xy crcr displaystyle{frac{partial{f}}{partial{y}}} = x^2 + 2y end{cases} $$

và có đạo hàm cấp 2 là:

$ begin{cases} displaystyle{frac{partial^2f}{partial{x^2}} = frac{partial}{partial{x}}Bigg(frac{partial{f}}{partial{x}}Bigg)} = 2y crcr displaystyle{frac{partial^2f}{partial{y}partial{x}} = frac{partial}{partial{y}}Bigg(frac{partial{f}}{partial{x}}Bigg)} = 2x end{cases} $      $ begin{cases} displaystyle{frac{partial^2f}{partial{x}partial{y}} = frac{partial}{partial{x}}Bigg(frac{partial{f}}{partial{y}}Bigg)} = 2x crcr displaystyle{frac{partial^2f}{partial{y^2}} = frac{partial}{partial{y}}Bigg(frac{partial{f}}{partial{y}}Bigg)} = 2 end{cases} J = nabla{f} = begin{bmatrix} nabla{f_1} & cdots & nabla{f_n} end{bmatrix} = begin{bmatrix} displaystyle{frac{partial{f_1}}{partial{x_1}}} & cdots & displaystyle{frac{partial{f_n}}{partial{x_1}}} cr vdots & ddots & vdots cr displaystyle{frac{partial{f_1}}{partial{x_m}}} & cdots & displaystyle{frac{partial{f_n}}{partial{x_m}}} end{bmatrix} begin{cases} f_x^{prime} = f_u^{prime}u_x^{prime} + f_v^{prime}v_x^{prime} cr f_y^{prime} = f_u^{prime}u_y^{prime} + f_v^{prime}v_y^{prime} end{cases} $$

Nhìn hơi khó nhớ phải không? Giờ ta viết lại dưới dạng giống như phân số thì chắc là dễ nhớ hơn chút:

$$ begin{cases} displaystyle{frac{partial{f}}{partial{x}} = frac{partial{f}}{partial{u}}frac{partial{u}}{partial{x}} + frac{partial{f}}{partial{v}}frac{partial{v}}{partial{x}}} crcr displaystyle{frac{partial{f}}{partial{y}} = frac{partial{f}}{partial{u}}frac{partial{u}}{partial{y}} + frac{partial{f}}{partial{v}}frac{partial{v}}{partial{y}}} end{cases} begin{cases} displaystyle{frac{partial{f}}{partial{x}} = frac{partial{f}}{partial{u}}frac{partial{u}}{partial{x}} + frac{partial{f}}{partial{v}}frac{partial{v}}{partial{x}} + frac{partial{f}}{partial{w}}frac{partial{w}}{partial{x}}} crcr displaystyle{frac{partial{f}}{partial{y}} = frac{partial{f}}{partial{u}}frac{partial{u}}{partial{y}} + frac{partial{f}}{partial{v}}frac{partial{v}}{partial{y}} + frac{partial{f}}{partial{w}}frac{partial{w}}{partial{y}}} end{cases} $$

Với hàm ẩn của hàm véc-tơ thì đạo hàm cũng được tính tương tự như vậy, nhưng có chút khác biệt khi ta sử dụng phép toán của véc-tơ. Giả sử ta có hàm véc-tơ $ f(g, h) $ có đầu ra là véc-tơ $ overrightarrow{v}(x, y) = begin{bmatrix} g(x, y) cr h(x, y) end{bmatrix} $ thì đạo hàm riêng của $ f $ sẽ là:

$$ begin{cases} displaystyle{frac{partial{f}}{partial{x}} = frac{partial{f}}{partial{g}}frac{partial{g}}{partial{x}} + frac{partial{f}}{partial{h}}frac{partial{h}}{partial{x}}} crcr displaystyle{frac{partial{f}}{partial{y}} = frac{partial{f}}{partial{g}}frac{partial{g}}{partial{y}} + frac{partial{f}}{partial{h}}frac{partial{h}}{partial{y}}} end{cases} iff begin{cases} displaystyle{frac{partial{f}}{partial{x}}} = begin{bmatrix} displaystyle{frac{partial{f}}{partial{g}}} cr displaystyle{frac{partial{f}}{partial{h}}} end{bmatrix} odot begin{bmatrix} displaystyle{frac{partial{g}}{partial{x}}} cr displaystyle{frac{partial{h}}{partial{x}}} end{bmatrix} crcr displaystyle{frac{partial{f}}{partial{y}}} = begin{bmatrix} displaystyle{frac{partial{f}}{partial{g}}} cr displaystyle{frac{partial{f}}{partial{h}}} end{bmatrix} odot begin{bmatrix} displaystyle{frac{partial{g}}{partial{y}}} cr displaystyle{frac{partial{h}}{partial{y}}} end{bmatrix} end{cases} iff begin{cases} displaystyle{frac{partial{f}}{partial{x}}} = nabla{f} odot overrightarrow{v^{prime}_x} crcr displaystyle{frac{partial{f}}{partial{y}}} = nabla{f} odot overrightarrow{v^{prime}_y} end{cases} $$

Như vậy ta có thể thấy đạo hàm của hàm hợp véc-tơ có thể tính bằng tích của gradient hàm hợp với đạo hàm riêng véc-tơ đầu ra.

6. Đạo hàm của hàm ẩn

Hàm ẩn là một hàm mà ta chưa biết dạng của nó nhưng ta biết rằng nó có thể biểu diễn qua một biến khác trong hàm số. Hơi khó hiểu chút ha!

Cho $ f(x, y) = 0 $, lúc này ta nói $ y(x) $ là hàm ẩn khi tồn tại $ y = y_0 $ sao cho $ f(x, y_0) = 0 $ với mọi $ x $. Khi đó ta còn có thể coi $ f $ là hàm một biến theo $ x $.

Mặc dù chưa biết dạng của $ y(x) $ nhưng lúc này ta có thể tính được đạo hàm của nó như sau: $displaystyle y_x^{prime} = -frac{f_x^{prime}}{f_y^{prime}} $

Đương nhiên là khi đó $ f_y^{prime} not = 0 $ thì công thức mới xác định được. Ta có thể chứng minh đơn giản như sau:

$$ f(x, y) = 0 implies f(x, y)^{prime} = 0 iff f_x^{prime} + f_y^{prime}y_x^{prime} = 0 iff y_x^{prime} = -frac{f_x^{prime}}{f_y^{prime}} $$

Viết dưới dạng loằng ngoằng ta sẽ được:

$$ frac{dy}{dx} = -frac{displaystyle{frac{partial{f}}{partial{x}}}}{displaystyle{frac{partial{f}}{partial{y}}}} $$

Trường hợp tổng quá cũng sẽ được tính tương tự. Ví dụ: $ f(x, y, u) $ có hàm ẩn $ u(x, y) $ thì đạo hàm riêng của $ u $ sẽ được tính như sau:

$$ begin{cases} displaystyle{u_x^{prime} = -frac{f_x^{prime}}{f_u^{prime}}} crcr displaystyle{u_y^{prime} = -frac{f_y^{prime}}{f_u^{prime}}} end{cases} $$

Giới Hạn Của Hàm Hai Biến Số

6. Các ví dụ:

Ví dụ 1: Không tồn tại giới hạn kép, nhưng tồn tại giới hạn lặp

Xét ví dụ 2 ở mục 4.

Ta có:

Ví dụ 2: Các giới hạn lặp tồn tại nhưng khác nhau

Ta xét hàm số

Khi đó: ,

Ví dụ 3: Tồn tại giới hạn kép, nhưng không tồn tại giới hạn lặp

nhưng không tồn tại

7. Liên tục:

Hàm số f(x; y) được gọi là liên tục tại nếu:

1. f(x; y) xác định tại

2. Tồn tại

3.

Hàm số được gọi là liên tục nếu nó liên tục tại mọi điểm của miền xác định Df

Nhận xét: Tổng, hiệu, tích của hai hàm liên tục là một hàm liên tục, thương của hai hàm liên tục là một hàm liên tục (nếu hàm ở mẫu số khác không).

Bài tập giải mẫu:

Bài 1: Tính giới hạn của hàm số:

Ta chứng minh hàm số không tồn tại giới hạn.

Cách 1: Thật vậy: xét dãy điểm (x;y) tiến về điểm (0;0) theo đường cong parabol : (k – hằng số). Ta có :

Do đó, giới hạn hàm số phụ thuộc vào hằng số k, nên với các giá trị k khác nhau ta sẽ có các giá trị giới hạn khác nhau.

Vậy: hàm số đã cho không có giới hạn tại điểm (0; 0)

Cách 2: Xét hai dãy điểm sau:

Nhưng:

Còn:

Vậy hàm số đã cho không có giới hạn

Bài 2: Tìm giới hạn của hàm số:

Cách 1: Thật vậy: xét dãy điểm (x;y) tiến về điểm (0;0) theo đường thẳng : (k – hằng số). Ta có :

Do đó, giới hạn hàm số phụ thuộc vào hằng số k, nên với các giá trị k khác nhau ta sẽ có các giá trị giới hạn khác nhau.

Vậy: hàm số đã cho không có giới hạn tại điểm (0; 0)

Cách 2: Xét hai dãy điểm sau:

Nhưng:

Còn:

Vậy hàm số đã cho không có giới hạn.

Cách 3: Chuyển hàm số đã cho về tọa độ cực ta có: x = r.cosφ ; y = r.sinφ. Và khi (x; y) → (0;0) thì r → 0.

Khi đó ta có:

Vậy giá trị giới hạn phụ thuộc vào góc quay φ, nên giá trị giới hạn sẽ thay đổi khi φ thay đổi.

Bài 3: Tìm giới hạn của hàm số:

Bài này chỉ khác bài trên ở chỗ tử số có thêm x. Tuy nhiên, kết quả bài toán này hoàn toàn thay đổi. ta sẽ chứng minh giới hạn hàm số sẽ bằng 0 khi (x;y) → (0; 0)

Vậy theo định lý giới hạn kẹp ta có được giới hạn hàm số bằng 0 khi (x; y) → (0;0)

Việc ta tìm cách tính giới hạn bằng cách sử dụng định lý kẹp cho bài trên xuất phát từ việc ta chuyển hàm số về tọa độ cực thì giá trị giới hạn của hàm số luôn bằng 0 khi tiến về 0, với mọi giá trị φ. Chính điều này, là điều kiện cần (nhưng không đủ) giúp cho ta biết được giá trị giới hạn hàm số là tồn tại và bằng o.

Bài 4: Tìm giới hạn của hàm số:

Các bạn có thể chứng minh bài toán này không có giới hạn bằng cách chuyển về tọa độ cực, hoặc xét dãy điểm tiến về (0;0) theo đường tròn: (k – hằng số) (xuất phát từ việc trong hàm số có chứa nên ta xây dựng đường tròn đi qua gốc tọa độ), hoặc bạn cũng có thể xét 2 dãy điểm khác nhau cùng tiến về (0; 0) là:

Bình chọn

Share this:

Thư điện tử

In

Facebook

Like this:

Số lượt thích

Đang tải…

Giải Sbt Toán 12 Ôn Tập Chương 1: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số

VnDoc xin giới thiệu tới bạn đọc tài liệu Giải SBT Toán 12 ôn tập chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số, chắc chắn nội dung tài liệu sẽ là nguồn thông tin hữu ích để giúp các bạn học sinh đạt kết quả cao hơn trong học tập.

Giải SBT Toán 12 ôn tập chương 1

Bài 1.49 trang 36 Sách bài tập (SBT) Giải tích 12

Cho hàm số: y = 4x 3 + mx (m là tham số) (1)

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với m = 1.

b) Viết phương trình tiếp tuyến của (C) song song với đường thẳng y = 13x + 1.

Hướng dẫn làm bài:

Bảng biến thiên:

Đồ thị:

b) Giả sử tiếp điểm cần tìm có tọa độ (x 0; y 0) thì f′(x 0)=12x 20+1=13 (vì tiếp tuyến song song với đường thẳng (d): y = 3x + 1). Từ đó ta có: x 0=±1

Vậy có hai tiếp tuyến phải tìm là y=13x±8

c) Vì y’ = 12x 2 + m nên: m≥0:y′′=−6(m 2+5m)x+12m

Vậy hàm số (1) luôn luôn đồng biến khi m≥0:y′′=−6(m 2+5m)x+12m

+) Với m < 0 thì y=0⇔x=±√−m/12

Từ đó suy ra:

y’ < 0 với −√−m/12<x<√−m/12

Vậy hàm số (1) đồng biến trên các khoảng (−∞;−√−m/12),(√−m/12;+∞) và nghịch biến trên khoảng (−√−m/12;√−m/12)

Bài 1.50 trang 37 Sách bài tập (SBT) Giải tích 12

a) Xác định m để hàm số (1) luôn luôn có cực đại, cực tiểu.

b) Chứng minh rằng phương trình: x 3 + mx 2 – 3 = 0 (2) luôn luôn có một nghiệm dương với mọi giá trị m thuộc R.

c) Xác định m để phương trình (2) có một nghiệm duy nhất.

Hướng dẫn làm bài:

Hàm số y=x 3+mx 2 −3 xác định và có đạo hàm trên R.

y′=3x 2+2mx=x(3x+2m)

Để hàm số có cực đại, cực tiểu thì phương trình y’ = 0 phải có hai nghiệm phân biệt:

Muốn vậy phải có m≠0

Vậy với mọi m, phương trình x 3 + mx 2 – 3 = 0 luôn luôn có nghiệm dương.

c) Phương trình f(x) = x 3 + mx 2 – 3 = 0 có duy nhất một nghiệm khi và chỉ khi cực đại và cực tiểu của hàm số y = f(x) cùng dấu, tức là:

⇔4m 3<81⇔m=(m≠0)

Bài 1.51 trang 37 Sách bài tập (SBT) Giải tích 12

a) Xác định m để hàm số đơn điệu trên R. Khi đó, hàm số đồng biến hay nghịch biến? Tại sao?

b) Với giá trị nào của m thì hàm số đạt cực đại tại x = 1?

Hướng dẫn làm bài:

a)

Hàm số đơn điệu trên R khi và chỉ khi y’ không đổi dấu.

Ta xét các trường hợp:

+) m 2+5m=0⇔ m=0;m=−5

– Với m = 0 thì y’ = 6 nên hàm số luôn đồng biến.

– Với m = -5 thì y’ = -60x + 6 đổi dấu khi x đi qua.

+) Với m 2+5m≠0 Khi đó, y’ không đổi dấu nếu

⇔3m 2+5m≤0⇔−5/3≤m≤0

Vậy với điều kiện −5/3≤m≤0 thì hàm số đồng biến trên R.

b) Nếu hàm số đạt cực đại tại x = 1 thì y'(1) = 0. Khi đó:

y′(1)=−3m 2 −3m+6=0⇔m=1;m=−2

Mặt khác, y′′=−6(m 2+5m)x+12m

+) Với m = 1 thì y” = -36x + 12. Khi đó, y”(1) = -24 < 0, hàm số đạt cực đại tại x = 1.

Vậy với m = 1 thì hàm số đạt cực đại tại x = 1.

Bài 1.52 trang 37 Sách bài tập (SBT) Giải tích 12

Cho hàm số y=(a−1)x 3/3+ax 2+(3a−2)x

a) Xác định a để hàm số luôn luôn đồng biến.

b) Xác định a để đồ thị của hàm số cắt trục hoành tại ba điểm phân biệt.

c) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với a=3/2

Hướng dẫn làm bài:

a) Ta có:

y′=(a−1)x 2+2ax+3a−2.

+) Với a = 1, y’ = 2x + 1 đổi dấu khi x đi qua −1/2. Hàm số không luôn luôn đồng biến.

+) Với a≠1 thì với mọi x mà tại đó y′≥0

(y’ = 0 chỉ tại x = -2 khi a = 2)

Vậy với a≥2 hàm số luôn luôn đồng biến.

b) Đồ thị cắt trục hoành tại ba điểm phân biệt khi và chỉ khi phương trình y = 0 có ba nghiệm phân biệt. Ta có:

y=0⇔x[(a−1)x 2/3+ax+3a−2]=0

⇔x[(a−1)x 2+3ax+9a−6]=0

y = 0 có ba nghiệm phân biệt khi và chỉ khi phương trình:

(a−1)x 2+3ax+9a−6=0 có hai nghiệm phân biệt khác 0.

Muốn vậy, ta phải có:

a−1≠0

9a−6≠0

Giải hệ trên ta được:

10−√28/9<a<2/3;2/3<a<1;1<a<10+√28/9

c) Khi a=3/2 thì y=x 3/6+3x 2/2+5x/2

y′=0⇔x 2+6x+5=0⇔x=−1;x=−5

Bảng biến thiên:

Đồ thị

Bài 1.53 trang 37 Sách bài tập (SBT) Giải tích 12

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.

b) Tìm các giá trị của tham số m để phương trình: x 3 – 3x 2 – m = 0 có ba nghiệm phân biệt.

(Đề thi tốt nghiệp THPT năm 2008).

Hướng dẫn làm bài:

a) TXĐ: D = R

Sự biến thiên:

y′=3x 2 −6x=3x(x−2)

y′=0⇔x=0;x=2

Hàm số đồng biến trên mỗi khoảng (−∞;0),(2;+∞)

Hàm số nghịch biến trên khoảng (0; 2).

Hàm số đạt cực đại tại x = 0 ; y CĐ = y(0) = 0

Hàm số đạt cực tiểu tại x = 2; y CT = y(2) = -4.

Giới hạn: lim x→±∞ y=±∞

Điểm uốn: y′′=6x−6,y′′=0⇔x=1;y(1)=−2

Suy ra đồ thị có điểm uốn I(1; -2)

Bảng biến thiên:

Đồ thị:

Đồ thị cắt trục hoành tại O(0; 0), A(3; 0). Đồ thị đi qua điểm B(-1; -4); C(2; -4).

Phương trình (*) có 3 nghiệm phân biệt khi và chỉ khi đường thẳng y = m cắt (C) tại 3 điểm phân biệt. Từ đó suy ra:

– 4 < m < 0.

Bài 1.54 trang 38 Sách bài tập (SBT) Giải tích 12

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.

b) Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến vuông góc với đường thẳng: y=1/6x−1

(Đề thi tốt nghiếp THPT năm 2010)

Hướng dẫn làm bài:

a) Học sinh tự giải

b) Ta có: y′=−4x 3 −2x

Vì tiếp tuyến vuông góc với đường thẳng y=1/6x−1 nên tiếp tuyến có hệ số góc là – 6. Vì vậy:

⇔2(x 3 −1)+(x−1)=0

⇔(x−1)(2x 2+2x+3)=0

Ta có: y(1) = 4

Phương trình phải tìm là: y – 4 = -6(x – 1) ⇔ y = -6x +10

Bài 1.55 trang 38 Sách bài tập (SBT) Giải tích 12

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1.

b) Xác định m để đồ thị (Cm) của hàm số đã cho tiếp xúc với trục hoành tại hai điểm phân biệt.

Hướng dẫn làm bài:

a)

y′=0⇔x=−1;x=0;x=1

Bảng biến thiên:

Đồ thị

Để (C m) tiếp xúc với trục hoành tại hai điểm phân biệt thì điều kiện cần và đủ là phương trình y’ = 0 có hai nghiệm phân biệt khác 0 và y CT = 0.

+) Nếu m≤0 thì x 2 −m≥0 với mọi x nên đồ thị không thể tiếp xúc với trục Ox tại hai điểm phân biệt.

⇔m 2(m−2)=0⇔m=2

Vậy m = 2 là giá trị cần tìm.

Bài 1.56 trang 38 Sách bài tập (SBT) Giải tích 12

Cho hàm số y=3(x+1)/x−2

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.

b) Viết phương trình các đường thẳng đi qua O(0;0) và tiếp xúc với (C).

c) Tìm tất cả các điểm trên (C) có tọa độ là các số nguyên.

Hướng dẫn làm bài:

a) Học sinh tự giải

b) Cách 1.

Phương trình tiếp tuyến tại điểm M 0(x 0; y 0) là:

Để đường thẳng đó đi qua O(0; 0), điều kiện cần và đủ là:

+) Với x 0=−1+√3, ta có phương trình tiếp tuyến: y=−3/2(2+√3)x

+) Với x 0=−1−√3, ta có phương trình tiếp tuyến: y=−3/2(2−√3)x

Cách 2.

Phương trình đường thẳng đi qua gốc tọa độ O có dạng y = kx.

Để xác định tọa độ tiếp điểm của hai đường: y=3(x+1)/x−2 và y = kx, ta giải hệ:

Giải phương trình thứ nhất ta được: x=−1±√3

Thay vào phương trình thứ hai ta có:

Từ đó có hai phương trình tiếp tuyến là: y=−3/2(2+√3)x và y=−3/2(2−√3)x

c) Để tìm trên (C) các điểm có tọa độ nguyên ta có:

y=3(x+1)/x−2⇔y=3+9/x−2y=3(x+1)x−2⇔y=3+9x−2

Điều kiện cần và đủ để M(x,y)∈(C) có tọa độ nguyên là:

{x∈Z;9/x−2∈Z

tức (x – 2) là ước của 9.

Khi đó, x – 2 nhận các giá trị ±1;±3;±9 hay x nhận các giá trị 1; 3; -1; 5; -7; 11.

Do đó, ta có 6 điểm trên (C) có tọa độ nguyên là: (1; -6), (3; 12), (-1; 0), (5; 6), (-7; 2), (11; 4).

Bài 1.57 trang 38 Sách bài tập (SBT) Giải tích 12

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.

y=x+2/x−3

b) Chứng minh rằng giao điểm I của hai tiệm cận của (C) là tâm đối xứng của (C).

c) Tìm điểm M trên đồ thị của hàm số sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ M đến tiệm cận ngang.

Hướng dẫn làm bài:

a) Học sinh tự giải

b) Tiệm cận đứng là đường thẳng x = 3.

Tiệm cận ngang là đường thẳng y = 1.

Do đó, giao điểm của hai đường tiệm cận là I(3; 1). Thực hiện phép biến đổi:

{x=X+3;y=Y+1

Ta được Y+1=X+5/X⇔Y=X+5/X−1⇔Y=5/X

Vì Y=5/X là hàm số lẻ nên đồ thị (C) của hàm số này có tâm đối xứng là gốc tọa độ I của hệ tọa độ IXY.

c) Giả sử M(x 0;y 0)∈(C). Gọi d 1 là khoảng cách từ M đến tiệm cận đứng và d 2 là khoảng cách từ M đến tiệm cận ngang, ta có:

Có hai điểm thỏa mãn đầu bài, đó là hai điểm có hoành độ x 0=3±√5

Bài 1.58 trang 38 Sách bài tập (SBT) Giải tích 12

Chứng minh rằng phương trình: 3x 5 + 15x – 8 = 0 chỉ có một nghiệm thực.

Hướng dẫn làm bài:

Hàm số 3x 5 + 15x – 8 = 0 là hàm số liên tục và có đạo hàm trên R.

Xét Tính Liên Tục Của Hàm Số

Xét tính liên tục của hàm số

A. Phương pháp giải & Ví dụ

Vấn đề 1: Xét tính liên tục của hàm số tại một điểm

– Cho hàm số y = f(x) có tập xác định D và điểm x 0 ∈ D. Để xét tính liên tục của hàm số trên tại điểm x = x 0 ta làm như sau:

+ Tìm giới hạn của hàm số y = f(x) khi x → x 0 và tính f(x 0)

+ Nếu tồn tại thì ta so sánh

với f(x 0).

Nếu = f(x 0) thì hàm số liên tục tại x 0

Chú ý:

1. Nếu hàm số liên tục tại x 0 thì trước hết hàm số phải xác định tại điểm đó.

2.

3. Hàm số liên tục tại x = x 0 ⇔ = k

4. Hàm số liên tục tại điểm x = x 0 khi và chỉ khi

Vấn đề 2: Xét tính liên tục của hàm số trên một tập

Ta sử dụng các định lí về tính liên tục của hàm đa thức, lương giác, phân thức hữu tỉ …

Nếu hàm số cho dưới dạng nhiều công thức thì ta xét tính liên tục trên mỗi khoảng đã chia và tại các điểm chia của các khoảng đó.

Ví dụ minh họa

Bài 1: Xét tính liên tục của hàm số sau tại x = 3

Hướng dẫn:

1. Hàm số xác định trên R

Ta có f(3) = 10/3 và

Vậy hàm số không liên tục tại x = 3

2. Ta có f(3) = 4 và

Vậy hàm số gián đoạn tại x = 3

Bài 2: Xét tính liên tục của các hàm số sau trên toàn trục số

1. f(x) = tan2x + cosx

Hướng dẫn:

1. TXĐ:

Vậy hàm số liên tục trên D

2. Điều kiện xác định:

Vậy hàm số liên tục trên (1;2) ∪ (2,+∞)

Bài 3: Xét tính liên tục của hàm số sau tại điểm chỉ ra

Hướng dẫn:

Ta có

Vậy hàm số liên tục tại x = 1

Bài 4: Xét tính liên tục của hàm số sau tại điểm chỉ ra

Hướng dẫn:

Vậy hàm số không liên tục tại điểm x = -1

Bài 5: Chọn giá trị f(0) để các hàm số sau liên tục tại điểm x = 0

Hướng dẫn:

Bài 6: Xét tính liên tục của các hàm số sau tại điểm đã chỉ ra

Hướng dẫn:

Ta có:

Vậy hàm số gián đoạn tại x = -1

Bài 7: Xét tính liên tục của các hàm số sau tại điểm đã chỉ ra

Hướng dẫn:

Ta có

Vậy hàm số liên tục tại x = 1

B. Bài tập vận dụng

Bài 1: Cho hàm số

Kết luận nào sau đây không đúng?

A. Hàm số liên tục tại x =-1

B. Hàm số liên tục tại x = 1

C. Hàm số liên tục tại x = -3

D. Hàm số liên tục tại x = 3

Bài 2: Cho hàm số

Kết luận nào sau đây là đúng?

A. Hàm số f(x) liên tục tại điểm x = -2

B. Hàm số f(x) liên tục tại điểm x = 0

C. Hàm số f(x) liên tục tại điểm x = 0,5

D. Hàm số f(x) liên tục tại điểm x = 2

Bài 3: Cho với x ≠ 0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu để hàm số f(x) liên tục tại x = 0?

Hiển thị đáp án

Đáp án: C

Bài 4: Cho hàm số . Hàm số f(x) liên tục tại:

A. Mọi điểm thuộc R

B. Mọi điểm trừ x = 0

C. Mọi điểm trừ x = 1

D. Mọi điểm trừ x = 0 và x = 1

Hiển thị đáp án

Đáp án: A

với x < 1, x≠0 thì liên tục trên khoảng đó. Do đó f(x) liên tục tại mọi điểm. Đáp án A

Bài 5: Cho

Phải bổ sung thêm giá trị f(0) giá trị bằng bao nhiêu để hàm số f(x) liên tục trên R?

A. 0 B. 1 C. √2 D. 2

Hiển thị đáp án

Đáp án: D

Bài 6: Cho

Phải bổ sung thêm giá trị f(0)bằng bao nhiêu thì hàm f(x) liên tục trên R?

A. 5/7 B. 1/7 C. 0 D. -5/7

Bài 7: Cho hàm số

Kết luận nào sau đây là sai:

A. Hàm số liên tục tại x = -2

B. Hàm số liên tục tại x = 2

C. Hàm số liên tục tại x = -4

D. Hàm số liên tục tại x = 4

Bài 8: Cho

Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục tại x = 0?

A. 0 B. 1/2 C. 1/√2 D. 1/(2√2)

Bài 9: Cho hàm số

A. 11 B. 4 C. -1 D. -13

Bài 10: Cho hàm số . Kết luận nào sau đây là đúng?

A. Hàm số f(x) liên tục tại điểm x = -3

B. Hàm số f(x) liên tục tại điểm x = 0

C. Hàm số f(x) liên tục tại điểm x = 2

D. Hàm số f(x) liên tục tại điểm x = 3

Bài 11: Cho hàm số . Kết luận nào sau đây là đúng?

Kết luận nào sau đây không đúng?

A. Hàm số liên tục tại x = -2

B. Hàm số liên tục tại x = 2

C. Hàm số liên tục tại x = -1

D. Hàm số liên tục tại x = 1

Bài 12: Cho . Kết luận nào sau đây là đúng?

Phải bổ sung giá trị f(0) bằng bao nhiêu để hàm số đã cho liên tục trên R?

A. -4/7 B. 0 C. 1/7 D. 4/7

Bài 13: Cho hàm số . Chọn câu đúng trong các câu sau:

(I) f(x) liên tục tại x = 2

(II) f(x) gián đoạn tại x = 2

(III) f(x) liên tục trên đoạn [-2;2]

A. Chỉ (I) và (III) B. Chỉ (I) C. Chỉ (II) D. Chỉ (II) và (III)

Bài 14: Cho hàm số . Tìm khẳng định đúng trong các khẳng định sau:

(I) f(x) gián đoạn tại x = 1

(II) f(x) liên tục tại x = 1

A. Chỉ (I) B. Chỉ (II) C. Chỉ (I) và (III) D. Chỉ (II) và (III)

Hiển thị đáp án

Đáp án: C

Bài 15: Cho hàm số . Tìm khẳng định đúng trong các khẳng định sau:

(II) f(x) liên tục tại x = -2

(III) f(x) gián đoạn tại x = -2

A. Chỉ (I) và (III) B. Chỉ (I) và (II) C. Chỉ (I) D. Chỉ (III)

Hiển thị đáp án

Đáp án: B

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k4: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Bạn đang đọc nội dung bài viết Đạo Hàm Của Hàm Nhiều Biến Số trên website Asianhubjobs.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!