Cập nhật nội dung chi tiết về Giải Toán Lớp 12 Bài 2 : Mặt Cầu mới nhất trên website Asianhubjobs.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất.
Bài 1 (trang 49 SGK Hình học 12): Tìm tập hợp tất cả các điểm M trong không gian luôn luôn nhìn một đoạn thẳng AB cố định dưới một góc vuông.
Lời giải:
Lời giải:
Lời giải:
Lời giải:
(theo định lí ba đường vuông góc)
Tương tự: HN ⊥ BC, HP ⊥ AC
Ta có: OM = ON = OP = R
Khi đó ∆OHM = ∆OHN = ∆OHP
Suy ra HM = HN = HP
Chứng tỏ H là tâm đường tròn nội tiếp tam giác ABC.
Vậy tâm O của mặt cầu thuộc đường thẳng d vuông góc với mp(ABC) tại tâm H của đường tròn nội tiếp tam giác ABC.
*Lấy điểm O thuộc trục đường tròn nội tiếp tam giác ABC.
Đường tròn nội tiếp tam giác ABC tiếp xúc với BC, CA, AB lần lượt tại N, P, M, ta có: HM ⊥ AB, HN ⊥ BC, HP ⊥ CA
OM ⊥ AB, ON ⊥ BC, OP ⊥ CA (1)
OM = ON = OP (2)
Từ (1) và (2) suy ra mặt cầu (S) tiếp xúc với ba cạnh của tam giác ABC. Vậy tập hợp tâm của các mặt cầu tiếp xúc với ba cạnh của tam giác ABC cho trước là trục đường tròn nội tiếp tam giác ABC.
Bài 5 (trang 49 SGK Hình học 12): Từ một điểm M nằm ngoài mặt cầu (O; R), vẽ hai đường thẳng cắt mặt cầu lần lượt tại A, B và C, D.
a) Chứng minh rằng chúng tôi = MC.MD
b) Gọi MO = d. Tính chúng tôi theo R và d.
Lời giải:
Trong mặt phẳng (P) thì các tích chúng tôi và chúng tôi là giá trị của phương tích của điểm M đối với đường tròn (C), do đó:
chúng tôi = MC.MD.
b) Mặt phẳng (OAB) cắt mặt cầu theo đường tròn lớn và phương tích của điểm M đối với đường tròn này là:
Bài 6 (trang 49 SGK Hình học 12): Cho mặt cầu (O; R) tiếp xúc với mặt phẳng (P) tại I. Gọi M là một điểm nằm trên mặt cầu nhưng không phải là điểm đối xứng với I qua tâm O. Từ M ta kẻ hai tiếp tuyến của mặt cầu cắt (P) tại A và B. Chứng minh rằng góc (AMB)= góc (AIB)
Lời giải:
a)Hãy xác định tâm và bán kính của mặt cầu đi qua 8 đỉnh của hình hộp đó.
b)Tính bán kính của đường tròn là giao tuyến của mp(ABCD) với mặt cầu trên.
Lời giải:
Lời giải:
Lời giải:
Ta có: (P) cắt mặt cầu S(O; R) theo đường tròn tâm H và bán kính HA không đổi.
Vậy các mặt cầu tâm O bán kính R = OA luôn đi qua đường tròn cố định tâm H bán kính bằng HA.
Bài 10 (trang 49 SGK Hình học 12): Cho hình chóp chúng tôi có bốn đỉnh đều nằm trên một mặt cầu, SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo nên bởi mặt cầu đó.
Lời giải:
Sách Giải Bài Tập Toán Lớp 12 Bài 2 : Mặt Cầu
Sách giải toán 12 Bài 2 : Mặt cầu giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 12 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Trả lời câu hỏi Toán 12 Hình học Bài 2 trang 43: Tìm tập hợp tâm các mặt cầu luôn luôn đi qua hai điểm cố định A và B cho trước.
Lời giải:
Tập hợp tâm các mặt cầu luôn luôn đi qua hai điểm cố định A và B cho trước là đường trung trực của đoạn thẳng AB
a) Hãy xác định đường tròn giao tuyến của mặt cầu S(O; r) và mặt phẳng (α) biết rằng khoảng cách từ tâm O đến (α) bằng r/2.
b) Cho mặt cầu S(O; r), hai mặt phẳng (α) và (β) có khoảng cách đến tâm O của mặt cầu đã cho lần lượt là a và b (0 < a < b < r). Hãy so sánh hai bán kính của các đường tròn giao tuyến.
Lời giải:
a)
Đường tròn giao tuyến của mặt cầu S(O; r) và mặt phẳng (α) là đường tròn tâm H có bán kính là:
Vậy đường tròn giao tuyến của mặt cầu S(O; r) và mặt phẳng (α) có bán kính lớn hơn mặt cầu S(O; r) và mặt phẳng (β)
a) Đi qua 8 đỉnh của hình lập phương.
b) Tiếp xúc với 12 cạnh của hình lập phương.
c) Tiếp xúc với 6 mặt của hình lập phương.
Lời giải:
a) Tâm là giao điểm các đường chéo (O)
Bán kính mặt cầu là OA = 1/2 AC’
Đường chéo hình vuông cạnh a là a√2 (AC = a√2)
Xét tam giác vuông ACC’ tại C:
⇒ bán kính mặt cầu đi qua 8 đỉnh hình lập phương là (a√3)/2
b) không có mặt cầu tiếp xúc với 12 cạnh của hình lập phương
c)
Tâm mặt cầu tiếp xúc 6 mặt của hình lập phương là trung điểm O của EE’
Bán kính mặt cầu là OE = 1/2 EE’ = 1/2 AA’ = 1/2 a
Trả lời câu hỏi Toán 12 Hình học Bài 2 trang 48: Cho hình lập phương ngoại tiếp mặt cầu bán kính r cho trước. Hãy tính thể tích của hình lập phương đó.
Lời giải:
Hình lập phương ngoại tiếp mặt cầu bán kính r có cạnh bằng 2r
Thể tích hình lập phương đó là: (2r) 3 = 8r 3
Bài 1 (trang 49 SGK Hình học 12): Tìm tập hợp tất cả các điểm M trong không gian luôn luôn nhìn một đoạn thẳng AB cố định dưới một góc vuông.
Bài 2 (trang 49 SGK Hình học 12): Cho hình chóp tứ giác đều chúng tôi có cạnh đều bằng a. Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp đó.
S.ABCD là hình chóp tứ giác đều cạnh đều bằng a
⇒ ABCD là hình vuông cạnh a và SA = SB = SC = SD = a.
Gọi O là hình chiếu của S trên (ABCD).
⇒ O là tâm hình vuông ABCD
⇒ OA = OB = OC = OD = OS.
⇒ O là tâm mặt cầu ngoại tiếp hình chóp S.ABCD,
Bài 3 (trang 49 SGK Hình học 12): Tìm tập hợp tâm các mặt cầu luôn chứa một đường tròn cố định cho trước.
Gọi I là tâm của mặt cầu chứa đường tròn (C) cố định cho trước.
⇒ I cách đều tất cả các điểm M thuộc đường tròn (C)
⇒ I nằm trên đường thẳng đi qua tâm của đường tròn (C) và vuông góc với mặt phẳng chứa (C).
Bài 4 (trang 49 SGK Hình học 12): Tìm tập hợp tâm các mặt cầu luôn cùng tiếp xúc với ba cạnh của một tam giác cho trước.
*Xét mặt cầu (S) có tâm O, bán kính R và tiếp xúc với ba cạnh BC, CA, AB của tam giác ABC tại M, N, P. H là hình chiếu vuông góc của O trên mp(ABC), ta có:
(theo định lí ba đường vuông góc)
Tương tự: HN ⊥ BC, HP ⊥ AC
Ta có: OM = ON = OP = R
Khi đó ΔOHM = ΔOHN = ΔOHP
Suy ra HM = HN = HP
Chứng tỏ H là tâm đường tròn nội tiếp tam giác ABC.
Vậy tâm O của mặt cầu thuộc đường thẳng d vuông góc với mp(ABC) tại tâm H của đường tròn nội tiếp tam giác ABC.
*Lấy điểm O thuộc trục đường tròn nội tiếp tam giác ABC.
Đường tròn nội tiếp tam giác ABC tiếp xúc với BC, CA, AB lần lượt tại N, P, M, ta có: HM ⊥ AB, HN ⊥ BC, HP ⊥ CA
OM ⊥ AB, ON ⊥ BC, OP ⊥ CA (1)
OM = ON = OP (2)
Từ (1) và (2) suy ra mặt cầu (S) tiếp xúc với ba cạnh của tam giác ABC. Vậy tập hợp tâm của các mặt cầu tiếp xúc với ba cạnh của tam giác ABC cho trước là trục đường tròn nội tiếp tam giác ABC.
Bài 5 (trang 49 SGK Hình học 12): Từ một điểm M nằm ngoài mặt cầu (O; R), vẽ hai đường thẳng cắt mặt cầu lần lượt tại A, B và C, D.
a) Chứng minh rằng chúng tôi = MC.MD
b) Gọi MO = d. Tính chúng tôi theo R và d.
a) Hai đường thẳng MAB và MCD giao nhau xác định một mặt phẳng (P). Mặt phẳng (P) cắt mặt cầu theo giao tuyến là đường tròn (C), ngoại tiếp tứ giác phẳng ABCD.
Xét ΔMAC và ΔMDB có:
⇒ chúng tôi = chúng tôi (đpcm).
b) Giả sử đường thẳng MO cắt mặt cầu tại P và Q.
Theo kết quả phần a) ta cùng có:
MA.MB = chúng tôi
Mà chúng tôi = (MO – OP)(MO + OQ) = (d – R)(d + R) = d 2 – R 2.
Bài 6 (trang 49 SGK Hình học 12): Cho mặt cầu (O; R) tiếp xúc với mặt phẳng (P) tại I. Gọi M là một điểm nằm trên mặt cầu nhưng không phải là điểm đối xứng với I qua tâm O. Từ M ta kẻ hai tiếp tuyến của mặt cầu cắt (P) tại A và B. Chứng minh rằng góc (AMB)= góc (AIB)
Bài 7 (trang 49 SGK Hình học 12): Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AA’ = a, AB = b, AD = c.
a) Hãy xác định tâm và bán kính của mặt cầu đi qua 8 đỉnh của hình hộp đó.
b) Tính bán kính của đường tròn là giao tuyến của mp(ABCD) với mặt cầu trên.
Bài 8 (trang 49 SGK Hình học 12): Chứng minh rằng nếu có một mặt cầu tiếp xúc với 6 cạnh của một hình tứ diện thì tổng các cặp cạnh đối diện của tứ diện bằng nhau.
Bài 9 (trang 49 SGK Hình học 12): Cho một điểm A cố định và một đường thẳng a cố định không đi qua A. Gọi O là một điểm thay đổi trên a. Chứng minh rằng các mặt cầu tâm O bán kính r = OA luôn luôn đi qua một đường tròn cố định
Gọi (P) là mặt phẳng đi qua A và vuông góc với đường thẳng a tại H. Khi đó (P) và H cố định.
Ta có: (P) cắt mặt cầu S(O; R) theo đường tròn tâm H và bán kính HA không đổi.
Vậy các mặt cầu tâm O bán kính R = OA luôn đi qua đường tròn cố định tâm H bán kính bằng HA.
Bài 10 (trang 49 SGK Hình học 12): Cho hình chóp chúng tôi có bốn đỉnh đều nằm trên một mặt cầu, SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo nên bởi mặt cầu đó.
Sách Giải Bài Tập Toán Lớp 12 Bài 1: Mặt Cầu, Khối Cầu (Nâng Cao)
Sách giải toán 12 Bài 1: Mặt cầu, Khối cầu (Nâng Cao) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 12 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Bài 1 (trang 45 sgk Hình Học 12 nâng cao): Trong không gian cho ba đoạn thẳng AB, BC, CD sao cho AB ⊥ BC, BC ⊥ CD, CD⊥AB. Chứng minh rằng có mặt cầu đi qua bốn điểm A, B, C, D. tính bán kính mặt cầu nếu AB = a, BC = b, CD = c.
Vì AB⊥BC VÀ AB⊥CD nên AB⊥BD
Tương tự ta có: DC⊥AC
Theo tính chất đường trung tuyến của tam giác vuông ứng với cạnh huyền: BO = CO = 1/2 AD. Suy ra A, B, C, D nằm trên mặt cầu tâm O,
Tâm mặt cầu O là trung điểm của AD
Bài 2 (trang 45 sgk Hình Học 12 nâng cao):
a) Tìm tập hợp các mặt cầu đi qua hai điểm phân biệt A, B cho trước.
b) Tìm tập hợp tam các mặt cầu đi qua đường tròn cho trước.
c) Có hay không một mặt cầu đi qua một đường tròn và một điểm nằm ngòi mặt phẳng của đường tròn.
Lời giải:
a) Gọi I là tam mặt cầu đi qua điểm A, B cho trước, khi đó IA = IB. vậy I nằm trên mặt phẳng trung trực của AB.
b) I là tâm mặt mầu đi qua ba điểm A, B, C cho trước và khi và chỉ khỉ IA = IB = IC. Vậy:
+ Nếu ba điểm A, B, C không thẳng hàng thì tập hợp các điểm I là trung trực của đường tròn ngoại tuyến tam giác ABC.
+ nếu ba điểm A, B, C thăng hàng và đôi một phân biệt thì tập hợp các điểm I là trục trực của của đường tròn ngoại tiếp tam giác ABC.
c) I là tâm mặt cầu đi qua đường tròn (C) cho trước khi và chỉ khi I cách đều mọi điểm của đường tròn. Vậy tập hợp các điểm I là trung trực của đường tròn (C )
d) Gọi M là trung điểm nằm ngoài mặt phẳng của đường tròn C. lấy điểm A nằm trên (C) và gọi I là giao điểm của trung trực đường tròn và mặt phẳng trung trực của MA. Khi đó mặt cầu tâm I, bán kính R = IA = IM là mặt cầu tâm I, bán kính R = IA = IM là mặt cầu đi qua đường tròn C và đi qua điểm M.
Bài 3 (trang 45 sgk Hình Học 12 nâng cao): Cho điểm M nằm trong mặt cầu (S). Trong các mệnh đề sau mệnh đề nào đúng?
a) Mọi mặt phẳng đi qua M đều cắt (S) theo một đường tròn.
b) Mọi đường thẳng qua M đều cắt (S) tại hai điểm phân biệt.
Lời giải:
Cả a, b đều đúng.
Bài 4 (trang 45 sgk Hình Học 12 nâng cao): Cho đường thẳng d và điểm A không nằm trên d. xét các mặt cầu đi qua A và có tâm nằm trên d, chứng minh rằng các mặt cầu đó luôn luôn đi qua một đường tròn cố định.
Bài 5 (trang 45 sgk Hình Học 12 nâng cao): Cho mặt cầu cố định (C).
Mệnh đề nào sau đây là đúng?
a) Mọi mặt của nó là đa giác nên mặt cầu thì mọi mặt của nó là đa giác nội.
b) Đường tròn thì đa diện đó nội tiến nội tiếp đường trong thì đa diện đó nội tiếp.
ABCD nội tiếp tại điểm E nằm trong mặt phẳng (BCD). Có 6 mặt ABC, các mặt đều là hình đa diện cầu. vì nếu có C, D, E thì nó là hình cấu đó chính là tiếp diện trên S.
Bài 7 (trang 45 sgk Hình Học 12 nâng cao):
a) Tính thể tích khối cầu ngoài tiếp hình bằng a và chiều cao h.
b) Cho hình chóp tứ giác đều chúng tôi có . Gọi A’, B’, C’ D’ lần lượt là csac trung điểm của A, B, C, D. tính thể tích khối cầu đó.
Lời giải:
a) Giả sử SH là đường cao của hình chóp đều chúng tôi khi đó SA SB = SC nên mọi điểm nằm trên SH cách đều A, B, C.
Trong mặt phẳng (SAH) đường trung trực của SA cắt SH tại O là tâm mặt cầu ngoại tiếp hình chóp, bán kính cầu là R = SO.
Gọi I là trung điểm SA thì tứ giác AHOI nội tiếp.
b)Gọi SH là đường cao của hình chóp đều SABCD thì H là tâm hình vuông ABCD và SH đi qua tâm H’ của hình vuông A’B’C’D’. hình vẽ. Mọi điểm nằm trên SH và cách đều 4 điểm A, B, C, D và cũng là cách đều 4 điểm A’, B’, C’, D’. trên SH xác định điểm O sao cho OA = OA’ thì O các ddefu 8 đỉnh A, B, C, D, A’, B’, C’, D’ tức 8 đỉnh đó nằm trên mặt cầu tâm O, bán kính R = OA. Điểm O là giao điểm của đương thẳng SH và mặt phẳng trung trực của đoạn AA’.
Do ΔSAC cân tại S. Gọi I là trung điểm của AA’ thì ΔSIO cũng vuông cân tại I nên IO = SI = 3a/4. Suy ra:
Thể tích khối cầu là:
Bài 8 (trang 45 sgk Hình Học 12 nâng cao): Cho tứ diện ABCD, với AB= CD = c, AC = BD = b, AD = BC = a.
a) Tính diện tích mặt cầu ngoại tiếp tứ diện.
b) Chứng minh rằng có một mặt cầu tiếp xức với bốn mặt cầu tư diện (nó được gọi là mặt cầu nội tiếp tứ diện).
a) Gọi I, J lần lượt là trung điểm của AB và CD thì IJ ⊥ AB, IJ ⊥ Cd
Gọi O là trung điểm của IJ thì OA = OB và OC = OD.
Do AB = CD = c nên hai tam giác vuông OIB và OJC bằng nahu nên OB = Oc.
Vậy O cách đều 4 đỉnh A, B, C, D
Mặt cầu ngoại tiếp tứ diện ABCD có tâm O, bán kính R = OA.
Ta có:
Vì CI là trung tuyến của tam giác ABC nên.
diện tích mặt cầu ngoại tiếp tứ diện ABCD là
b) Các mặt của tứ diện là tam giác bằng nhau (đều có ba cạnh là a, b, c) nên các đường tròn ngoại tiếp các tam giác đó có bán kính r bằng nhau. Các đường tròn đó đều nằm trên mặt cầu (O, R) nên khoảng cách từ tâm O tới các mặt phẳng chứa các đường tròn đó bằng nhau và bằng
Vậy mặt cầu tâm O bán kính h là mặt cầu nội tiếp tứ diện ABCD.
Bài 9 (trang 46 sgk Hình Học 12 nâng cao): Tìm diện tích mặt cầu ngoại tiếp hình chóp SABC biết SA = a, SB = b, SC = c và ba cạnh Sa, SB, SC đôi một vuông góc. Chứng minh rằng các điểm S, G, I thẳng hàng, trong đó G là trọng tâm tam giác ABC và I là tâm mặt cầu ngoại tiếp hình chóp S.ABC.
Gọi J là trung điểm của AB. Vì tam giác SAB vuông ở đỉnh S nên Í = JA = IB (hình vẽ bên)
Gọi Δ là đường thẳng vuông góc với mặt phẳng (SAB) tại J thì mọi điểm của đường Δ đều cách 3 điểm S, A, B. Bởi vậy nếu gọi I là giao điểm của Δ với mặt phẳng trung trực của đoạn SC thì I các đều 4 điểm S, A, B, C.
Vậy mặt cầu ngoại tiếp hình chóp có tâm I, bán kính R = IA.
Vì (SC
Bài 10 (trang 46 sgk Hình Học 12 nâng cao):
a) Chứng minh rằng một hình lăng trụ có mặt cầu ngoại tiếp khi và chỉ khi nó là hình lăng trụ đứng và đáy là đa giác nội tiếp đường tròn.
b) Trong các hình hộp nội tiếp mặt cầu cho trước, hình hộp nào có diện tích toàn phần lớn nhất.
a) Nếu H là hình lăng trụ có mặt cầu ngoại tiếp thì các mặt bên là những hình bình hành có đường tròn ngoại tiếp nen phải là hình chữ nhật. ngoài ra H có mặt cầu ngoại tiếp nên mặt đáy phải là đa giác có đường tròn ngoại tiếp.
Ngược lại cho H là lăng trụ đúng có các đường tròn C và C’ ngoại tiếp các đa giác (hình vẽ).
Gọi I, I’ là tâm của C và C’ thì II’ là trục của cả hai đường tròn, gọi O là trung điểm của II’ thì cách đều tấu cả các đỉnh của hình lăng trụ đa cho.
Vậy hình lăng trụ ấy có mặt cầu ngoại tiếp.
b) Nếu hình hộp H nội tiếp mặt cầu S(O, R) thì các mặt của H phải là những hình chữ nhật, vậy H là hình chữ nhật mà O là các giao điểm các đường chéo, và độ dài đường chéo d = 2R.
Gọi a, b, c là các kích thước của hình hộp chữ nhật đó thì a 2+b 2+c 2=d 2=4R 2. Gọi S là diện tích toàn phần của hình hộp thì ta có:
Vậy S đạt giá trị lớn nhất bằng 8R 2 thì
tức là H là hình lập phương.
Giải Bài Tập Sgk Toán Lớp 9 Bài 3: Hình Cầu. Diện Tích Mặt Cầu Và Thể Tích Hình Cầu
Giải bài tập SGK Toán lớp 9 trang 121, 124, 125 SGK
Giải bài tập SGK Toán 9 bài 3: Hình cầu. Diện tích mặt cầu và thể tích hình cầu
Giải bài tập SGK Toán lớp 9 bài 3: Hình cầu. Diện tích mặt cầu và thể tích hình cầu được chúng tôi sưu tầm và tổng hợp. Tài liệu sẽ giúp các bạn học sinh hệ thống lại những kiến thức đã học trong bài, định hướng phương pháp giải các bài tập cụ thể. Ngoài ra việc tham khảo tài liệu còn giúp các bạn học sinh rèn luyện và nâng cao kỹ năng giải bài tập. Mời các bạn cùng tham khảo
Trả lời câu hỏi Toán 9 Tập 2 Bài 3 trang 121: Cắt một hình trụ hoặc một hình cầu với mặt phẳng vuông góc với trục, ta được hình gì? Hãy điền vào bảng (chỉ với từ “có”, “không”) (h.104)
Lời giải
)?
(A) 2cm; (B) 3cm; (C) 5cm;
(D) 6cm; (E) Một kết quả khác.
Lời giải Kiến thức áp dụng
Bài 31 (trang 124 SGK Toán 9 tập 2): Hãy điền vào các ô trống ở bảng sau:
Lời giải
Cách tính:
Dòng thứ nhất:
Dòng thứ hai:
Bài 32 (trang 125 SGK Toán 9 tập 2): Một khối gỗ dạng hình trụ, bán kính đường tròn đáy là r, chiều cao 2r (đơn vị: cm). Người ta khoét rỗng hai nửa hình cầu như hình 108. Hãy tính diện tích bề mặt của khối gỗ còn lại (diện tích cả ngoài lẫn trong).
Lời giải
Diện tích phần cần tính gồm diện tích xung quanh của một hình trụ bán kính đường tròn đáy r (cm), chiều cao là 2r (cm) và một mặt cầu bán kính r (cm).
Diện tích xung quanh của hình trụ:
Diện tích mặt cầu:
Diện tích cần tính là:
Bài 33 (trang 125 SGK Toán 9 tập 2): Dụng cụ thể thao.
Các loại bóng cho trong bảng đều có dạng hình cầu. Hãy điền vào các ô trống ở bảng sau (làm tròn kết quả đến chữ số thập phân thứ hai):
Lời giải
Cách tính:
+ Quả bóng gôn:
⇒ Độ dài đường tròn lớn:
⇒ Diện tích mặt cầu:
⇒ Thể tích khối cầu:
+ Quả khúc côn cầu:
⇒ Diện tích mặt cầu: S = πd 2 ≈ 168,39 (cm 2).
⇒ Thể tích khối cầu: 3).
+ Quả ten-nít:
d = 6,5cm
⇒ Độ dài đường tròn lớn: C = π.d ≈ 20,42 (cm)
⇒ Diện tích mặt cầu: S = πd 2 ≈ 132,73 (cm 2)
⇒ Thể tích khối cầu: 3).
+ Quả bóng bàn:
d = 40mm
⇒ Độ dài đường tròn lớn C = π.d ≈ 125,66 (cm)
⇒ Diện tích mặt cầu: S = π.d 2 ≈ 5026,55 (cm 2)
⇒ Thể tích khối cầu: 3)
+ Quả bi-a;
d = 61mm
⇒ Độ dài đường tròn lớn C = π.d ≈ 191,64 (mm)
⇒ Diện tích mặt cầu: S = π.d 2 ≈ 11689,87 (mm 2)
⇒ Thể tích khối cầu: 3)
Bài 34 (trang 125 SGK Toán 9 tập 2): Khinh khí cầu của nhà Mông-gôn-fi-ê (Montgolfier)
Ngày 4-6-1783, anh em nhà Mông-gôn-fi-ê (người Pháp) phát minh ra khinh khí cầu dùng không khí nóng. Coi khinh khí cầu này là hình cầu có đường kính 11m. Hãy tính diện tích mặt khinh khí cầu đó (làm tròn kết quả đến chữ số thập phân thứ hai).
Lời giải
Bài 35 (trang 126 SGK Toán 9 tập 2): Một cái bồn chứa xăng gồm hai nửa hình cầu và một hình trụ (h.110).
Lời giải
Thể tích cần tính gồm một hình trụ và hai nửa hình cầu.
– Hình cầu có đường kính d = 1,8m ⇒ bán kính R = 0,9m
– Bán trụ có bán kính đáy bằng bán kính hình cầu R = 0,9m; chiều cao h = 3,62m.
Thể tích hai nửa hình cầu: 3).
Thể tích bồn chứa xăng: V = V 1 + V 2 ≈ 12,26(m 3).
Bài 36 (trang 126 SGK Toán 9 tập 2): Một chi tiết máy gồm một hình trụ và hai nửa hình cầu với các kích thước đã cho trên hình 111 (đơn vị: cm).
a) Tìm một hệ thức giữa x và h khi AA’ có độ dài không đổi và bằng 2a.
b) Với điều kiện ở a), hãy tính diện tích bề mặt và thể tích của chi tiết máy theo x và a.
Lời giải
a) Ta có: AA’ = AO + OO’ + O’A’
hay 2a = x + h + x
hay 2x + h = 2a.
b) Diện tích cần tính gồm diện tích xung quanh của hình trụ có bán kính đáy là x, chiều cao là h và diện tích mặt cầu có bán kính là x.
Bài 37 (trang 126 SGK Toán 9 tập 2): Cho nửa đường tròn tâm O, đường kính AB = 2R, Ax và By là hai tiếp tuyến với nửa đường tròn tại A và B. Lấy trên tia Ax điểm M rồi vẽ tiếp tuyến MP cắt By tại N.
a) Chứng minh rằng MON và APB là hai tam giác vuông đồng dạng.
b) Chứng minh chúng tôi = R 2
c) Tính tỉ số
d) Tính thể tích của hình do nửa hình tròn APB quay quanh AB sinh ra.
Lời giải
a) Ta có OM, ON lần lượt là tia phân giác của AOP, BOP ( tính chất của hai tiếp tuyến cắt nhau).
Mà AOP kề bù với BOP nên suy ra OM vuông góc với ON.
Vậy ΔMON vuông tại O.
………………………………
Bạn đang đọc nội dung bài viết Giải Toán Lớp 12 Bài 2 : Mặt Cầu trên website Asianhubjobs.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!