Cập nhật nội dung chi tiết về Tích Phân Hai Lớp Trong Tọa Độ Cực. Công Thức Đổi Biến mới nhất trên website Asianhubjobs.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất.
Ví dụ: Xác định cận lấy tích phân sau trong tọa độ cực:
1. D giới hạn bởi :
Ta có: D giới hạn bởi đường tròn tâm O , bán kính 1 nên O nằm trong miền D, và mọi tia xuất phát từ O cắt biên tại 1 điểm có: r = 1 Do đó theo (3) ta có :
2 D giới hạn bởi
Dựa vào hình vẽ ta thấy: 2 tia xuất phát từ O tiếp xúc với đường tròn chính là 2 tia ,
Do đường tròn đi qua O nên cận dưới r = 0, cận trên,: chuyển D qua tọa độ cực ta có
Vậy cận lấy tích phân của miền D là:
3. D giới hạn bởi
Hoàn toàn tương tự, bạn sẽ tìm được cận lấy tích phân của miền D là:
4. D là miền giới hạn bởi đường tròn tâm I(a;b) , bán kính R bất kỳ.
Trong trường hợp này, việc tìm ra phương trình của 2 tia OA, OB sẽ rất vất vả, đôi khi lại không rơi vào các góc đặc biệt. Và việc tìm ra phương trình của cung lớn, cung nhỏ AB cũng không phải đơn giản.
Tuy nhiên, nếu tịnh tiến tâm đường tròn về góc tọa độ thì bài toán sẽ đơn giản hơn rất nhiều vì sẽ trở về ví dụ 1.
Với miền D có dạng này, trước tiên ta đổi biến. Đặt:
Khi đó:
5. Cho với D là miền giới hạn bởi các đường thẳng:
Ở đây, tuy miền D là miền tam giác và ta dễ dàng xác định cận giới hạn của miền D là: , nhưng trong hàm lấy tích phân là nên việc lấy tích phân sẽ phức tạp. Do đó, cần chuyển sang tọa độ cực.
Khi đó: bạn dễ dàng nhận thấy miền D giới hạn bởi 2 tia , gốc O thuộc miền D nên chỉ cần tìm cận trên của r . Dựa vào hình vẽ: cận trên được xác định
Vậy:
Cách 2: xác định cận bằng phương pháp đại số.
Chuyển các phương trình đường cong sang tọa độ cực. Chú ý điều kiện ban đầu Khi đó: bạn sẽ có các trường hợp sau:
TH1: chỉ có duy nhất đường cong
Trường hợp này, ta tìm điều kiện của để . Khi đó, kết hợp điều kiện ta có cận của ; còn cận của r sẽ là:
Ví dụ 1: Xác định cận của tích phân trong tọa độ cực nếu D là miền giới hạn bởi
Ta có:
Do đó cận lấy tích phân được xác định bởi:
Ví dụ 2: Xác định cận của tích phân trong tọa độ cực nếu D là miền giới hạn bởi đường cong:
Rõ ràng, trong trường hợp này, việc vẽ miền D để xác định cận là việc làm tương đối khó khăn.
Nếu chuyển qua tọa độ cực, ta có:
Hay:
Do điểm (0;0) nằm trên đường cong, nên gốc O thuộc vào miền lấy tích phân D. Nên:
Như vậy, ta phải có điều kiện:
Nghĩa là: hoặc
Như vậy miền D gồm hai miền:
TH2: thu được 2 đường cong xác định bởi:
Với trường hợp này, ta phải tìm điều kiện của để:
Ví dụ: D là miền giới hạn nằm ngoài đường tròn tâm O, bán kính 1 và nằm trong đường tròn tâm I(1;0) bán kính 1.
Theo giả thiết ta có:
Chuyển qua tọa độ cực ta có:
Hay:
Như vậy, ta phải có điều kiện:
Từ đó, ta có:
Vậy:
Ngoài ra, còn một số trường hợp khác dành cho các bạn nghiên cứu thêm.
3. Đổi biến trong tích phân kép:
Cho hàm số f(x;y) liên tục trong miền D đóng và bị chặn.
Xét phép đổi biến: (1)
Giả sử:
– D’ là tạo ảnh của D qua phép biến đổi (1)
– (1) xác định một song ánh từ D’ lên D. (Nghĩa là phép đổi biến biến miền D trong mp(Oxy) thành miền D’ trong mp(O’uv) sao cho mỗi điểm (u;v) thuộc D’ chỉ tương ứng duy nhất với 1 điểm (x;y) thuộc D).
– Các hàm số x(u;v) và y(u;v) liên tục và có đạo hàm riêng liên tục trên D’, thỏa mãn điều kiện:
(J được gọi là định thức Jacobi của các hàm số x và y)
Khi đó, ta có công thức đổi biến sau:
(Ta công nhận công thức đổi biến trên)
Ví dụ: Tính với D giới hạn bởi: ; ; ;
Với miền D cho như trên, nếu làm theo cách thông thường, dù lấy theo phương nào, ta phải chia miền D thành nhiều miền nhỏ. Do đó, việc tính toán sẽ phức tạp.
Dễ dàng nhận thấy miền D bị giới hạn bởi 2 cặp đường thẳng song song. Cặp thứ nhất có dạng: và cặp thứ hai có dạng:
Do đó: thực hiện phép đổi biến. Đặt:
Và:
Trang: 1 2 3
Giải Phương Trình Lượng Giác Bằng Phương Pháp Biến Đổi Công Thức Lượng Giác
Bài viết hướng dẫn cách giải phương trình lượng giác bằng phương pháp biến đổi công thức lượng giác thông qua các ví dụ minh họa có lời giải chi tiết.
1. Sử dụng các phép biến đổi góc lượng giác Khi giải phương trình lượng giác cần xem xét mối quan hệ giữa các góc (cung) để từ đó kết hợp với các phép biến đổi góc đặc biệt, công thức cộng lượng giác … để đưa về dạng góc cơ bản.
Ví dụ 1. Giải các phương trình lượng giác sau: a. $frac1{sin x} + frac1{sin left( {x – frac{{3pi }2} right)}}$ $ = 4sin left( frac{{7pi }4 – x} right).$ b. $sin ^4x + cos ^4x$ $ = frac78cot left( x + frac{pi 3} right)cot left( frac{pi 6 – x} right).$ c. $frac{{{sin ^4}2x + {cos ^4}2x}}{tan left( {frac{pi 4 – x} right)tan left( frac{pi 4 + x} right)}}$ $ = cos ^44x.$
a. Nhận xét: Từ sự xuất hiện hai cung $x – frac{3pi }2$ và $frac{7pi }4 – x$ mà chúng ta liên tưởng đến việc đưa đưa $2$ cung này về cùng một cung $x$. Để làm được điều đó ta có thể sử dụng công thức cộng cung hoặc công thức về các góc đặc biệt. Điều kiện: $sin x ne 0$, $cos x ne 0$ $ Leftrightarrow sin 2x ne 0$ $ Leftrightarrow x ne kfracpi 2,k in Z.$ $PT Leftrightarrow frac1{sin x} + frac1{cos x}$ $ = – 2sqrt 2 left( cos x + sin x right)$ $ Leftrightarrow left( sin x + cos x right)left( sqrt 2 sin 2x + 1 right) = 0.$ Kết hợp với điều kiện ta được nghiệm phương trình là: $x = – fracpi 4 + kpi $, $x = – fracpi 8 + kpi $, $x = frac{5pi }8 + kpi $ $left( k in Z right).$ b. Điều kiện: $sin left( x + frac{pi 3} right).sin left( frac{pi 6 – x} right) ne 0$ $ Leftrightarrow cos left( 2x + frac{pi 6} right) ne cos fracpi 2 = 0.$ Do $left( x + frac{pi 3} right) + left( frac{pi 6 – x} right) = fracpi 2$ nên $PT Leftrightarrow sin ^4x + cos ^4x = frac78$ $ Leftrightarrow 1 – frac12sin ^22x = frac78$ $ Leftrightarrow sin 2x = pm frac12$. Kết hợp với điều kiện ta được: $x = pm fracpi {12} + kfracpi 2$ $left( k in Z right).$ c. Nhận xét: Từ tổng hai cung $left( frac{pi 4 – x} right) + left( frac{pi 4 + x} right) = fracpi 2$ nên $tan left( frac{pi 4 – x} right)tan left( frac{pi 4 + x} right) = 1.$ Điều kiện 1: $cos left( frac{pi 4 – x} right)cos left( frac{pi 4 + x} right) ne 0$ $ Leftrightarrow frac12left( cos 2x + cos frac{pi 2} right) ne 0$ $ Leftrightarrow cos 2x ne 0.$ Điều kiện 2: $sin left( frac{pi 4 – x} right)sin left( frac{pi 4 + x} right) ne 0$ $ Leftrightarrow frac12left( cos 2x – cos frac{pi 2} right) ne 0$ $ Leftrightarrow cos 2x ne 0.$ $PT Leftrightarrow sin ^42x + cos ^42x = cos ^44x$ $ Leftrightarrow 1 – frac12sin ^24x = cos ^44x$ $ Leftrightarrow 2cos ^44x – cos ^24x – 1 = 0$ $ Leftrightarrow left[ beginarrayl cos ^24x = 1 cos ^24x = – frac12left( loại right) endarray right.$ $ Leftrightarrow sin 4x = 0$ $ Leftrightarrow left[ beginarrayl sin 2x = 0 cos 2x = 0left( loại right) endarray right.$ Vậy phương trình có nghiệm $x = kfracpi 2.$
2. Sử dụng công thức biến đổi tổng thành tích và công thức biến đổi tích thành tổng Khi giải phương trình lượng giác mà gặp dạng tổng (hoặc hiệu) của $sin$ (hoặc $cos$) với nhiều cung khác nhau ta cần để ý đến các cung có tổng (hiệu) các góc bằng nhau để áp dụng công thức tổng sang tích.
a. Nhận xét: Bài có các cung khác nhau biểu diễn dưới dạng tổng (hiệu) của các hàm số $sin$ (hàm số $cos$) ta nên ghép các số hạng này thành cặp sao cho tổng (hiệu) các cung của chúng bằng nhau, cụ thể trong trường hợp này ta để ý: $x + 6x$ $ = 2x + 5x$ $ = 3x + 4x.$ Tại sao lại cần phải ghép như vậy? Lý do là chúng ta cần xuất hiện thừa số chung để nhóm ra ngoài, đưa bài toán về dạng tích. $PT Leftrightarrow left( sin 6x + sin x right)$ $ + left( sin 5x + sin 2x right) + left( sin 4x + sin 3x right) = 0$ $ Leftrightarrow 2sin frac{7x}2left( cos frac{{5x}2 + cos fracx2 + cos frac{3x}2} right) = 0$ $ Leftrightarrow 4sin frac{7x}2cos frac{3x}2left( 2cos x + 1 right) = 0.$ Vậy phương trình có nghiệm $x = frac{k2pi }7$, $x = fracpi 3 + frac{k2pi }3$, $x = pm frac{2pi }3 + k2pi $ $left( k in Z right).$ b. Ta có thể giải phương trình này bằng cách sử dụng công thức nhân ba của $sin$ và $cos$ nhưng lời giải sẽ phức tạp hơn. Chính vì thế mà ta khéo léo phân tích để áp dụng công thức tích sang tổng. $PT Leftrightarrow frac12left( cos 4x + cos 2x right)cos ^2x$ $ + frac12left( cos 4x – cos 2x right)sin ^2x$ $ = frac{2 – 3sqrt 2 }8$ $ Leftrightarrow cos 4xleft( {{sin ^2}x + {cos ^2}x} right)$ $ + cos 2xleft( {{cos ^2}x – {sin ^2}x} right)$ $ = frac{2 – 3sqrt 2 }4$ $ Leftrightarrow cos 4x + cos ^22x = frac{2 – 3sqrt 2 }4$ $ Leftrightarrow cos 4x = – frac{sqrt 2 }2$ $ Leftrightarrow x = pm frac{3pi }{16} + kfracpi 2$ $(k ∈ Z).$ c. $PT Leftrightarrow 1 – cos 2x + sin x$ $ – sin 2x + cos 3x – cos x = 0$ $ Leftrightarrow 2sin ^2x + sin x$ $ – 2sin xcos x – 2sin 2xsin x = 0$ $ Leftrightarrow sin xleft( 2sin x – 2cos x – 2sin 2x + 1 right) = 0$ $ Leftrightarrow left[ beginarrayl sin x = 0 2left( sin x – cos x right) – 4sin xcos x + 1 = 0 endarray right.$ Đáp số: $x = kpi $, $x = pm fracpi 3 + k2pi $, $x = – fracpi 6 + k2pi $, $x = frac{7pi }6 + k2pi $ $(k ∈ Z).$ d. $PT Leftrightarrow 2sin xcos x + sin x$ $ – sin ^3x + cos x – cos ^3x = 0$ $ Leftrightarrow 2sin xcos x + sin xcos ^2x$ $ + cos xsin ^2x = 0$ $ Leftrightarrow sin xcos xleft( 2 + sin x + cos x right) = 0.$ Đáp số: $x = kfracpi 2$ $(k ∈ Z).$
a. Từ sự xuất hiện bậc chẵn của hàm số $sin$ và tổng hai cung $frac{6x + 2x}2 = 4x$ mà ta nghĩ đến việc hạ bậc và sử dụng công thức biến tổng sang tích sau đó nhóm các hạng tử để đưa về phương trình tích. $PT Leftrightarrow cos 2x + cos 4x + cos 6x = 0$ $ Leftrightarrow cos 4xleft( 2cos 2x + 1 right) = 0$ $ Leftrightarrow left[ beginarrayl cos 4x = 0 cos 2x = – frac12 endarray right.$ Vậy phương trình có nghiệm: $x = fracpi 8 + frac{kpi }4$, $x = pm fracpi 3 + kpi $ $(k ∈ Z).$ b. $PT Leftrightarrow frac{1 – cos 6x}x – frac{1 + cos 8x}2$ $ = frac{1 – cos 10x}2 – frac{1 + cos 12x}2$ $ Leftrightarrow left( cos 12x + cos 10x right) $ $- left( cos 8x + cos 6x right) = 0$ $ Leftrightarrow 2cos 11xcos x – 2cos 7xcos x = 0$ $ Leftrightarrow cos xleft( cos 11x – cos 7x right) = 0$ $ Leftrightarrow cos xsin 9xsin 2x = 0.$ Vậy phương trình có nghiệm: $x = kfracpi 9$, $x = kfracpi 2$ $left( k in Z right).$ c. Điều kiện: $cos x ne 0.$ $PT Leftrightarrow frac12left[ 1 – cos left( {x – frac{pi 2} right)} right]frac{{{sin ^2}x}}{{{cos ^2}x}}$ $ = frac12left( 1 + cos x right)$ $ Leftrightarrow left( 1 – sin x right)sin ^2x = left( 1 + cos x right)cos ^2x$ $ Leftrightarrow left( 1 – sin x right)left( 1 + cos x right)left( sin x + cos x right) = 0.$ Đáp số: Kết hợp với điều kiện ta được: $x = pi + k2pi $, $x = – fracpi 4 + kpi $ $left( k in Z right).$ d. $PT Leftrightarrow frac{1 + cos 6x}2cos 2x$ $ – frac{1 + cos 2x}2 = 0$ $ Leftrightarrow cos chúng tôi 2x – 1 = 0$ $ Leftrightarrow cos 8x + cos 4x – 2 = 0$ $ Leftrightarrow 2cos ^24x + cos 4x – 3 = 0$ $ Leftrightarrow cos 4x = 1 Leftrightarrow x = kfracpi 2$ $left( k in Z right).$
a. $PT Leftrightarrow sin 7x – sin x$ $ – left( 1 – 2{{sin ^2}2x} right) = 0$ $ Leftrightarrow 2cos chúng tôi 3x – cos 4x = 0$ $ Leftrightarrow cos 4xleft( 2sin 3x – 1 right) = 0.$ Vậy phương trình có nghiệm: $x = fracpi 8 + kfracpi 4$, $x = fracpi {18} + kfrac{2pi }3$, $x = frac{5pi }{18} + kfrac{2pi }3$ $(k∈Z).$ b. $left( {1 + cos 2x right)^2} + left( {1 + sin 2x right)^2} = 1$ $ Leftrightarrow sin 2x + cos 2x = – 1$ $ Leftrightarrow sqrt 2 cos left( 2x – frac{pi 2} right) = – 1$ $ Leftrightarrow left[ beginarrayl x = fracpi 2 + kpi x = – fracpi 4 + kpi endarray right.left( k in Z right)$ c. $PT Leftrightarrow – sqrt 3 cos x + sin x = 0$ $ Leftrightarrow frac12sin x – frac{sqrt 3 }2cos x = 0$ $ Leftrightarrow sin left( x – frac{pi 3} right) = 0$ $ Leftrightarrow x = fracpi 3 + kpi $ $(k∈Z).$ d. $PT Leftrightarrow 3tan ^3x – tan x$ $ + frac{3left( {1 + sin x right)}}{{{cos ^2}x}} – 4left( 1 + sin x right) = 0$ $ Leftrightarrow tan xleft( 3{{tan ^2}x – 1} right)$ $ + left( 1 + sin x right)left( 3{{tan ^2}x – 1} right) = 0$ $ Leftrightarrow left( 3{{tan ^2}x – 1} right)left( tan x + 1 + sin x right) = 0$ Trường hợp 1: $tan x = pm frac1{sqrt 3 }$ $ Leftrightarrow x = pm fracpi 6 + kpi $ $left( k in Z right).$ Trường hợp 2: $1 + sin x + tan x = 0$ $ Leftrightarrow sin x + cos x + sin xcos x = 0$ (phương trình đối xứng với $sin$ và $cos$). Giải phương trình này được: $x = fracpi 4 pm arccos left( frac{{sqrt 2 – 1}2} right) + k2pi $ $left( k in Z right).$
4. Sử dụng các đẳng thức lượng giác quan trọng (hằng đẳng thức) Ví dụ 6. Giải các phương trình lượng giác sau: a. $left( {sin frac{x2 + cos fracx2} right)^2} + sqrt 3 cos x = 2.$ b. $cot x – tan x + 4sin 2x = frac2{sin 2x}.$ c. $tan x = cot x + 2cot ^32x.$ d. $tan x + cot x = 2left( sin 2x + cos 2x right).$
a. $PT Leftrightarrow 1 + 2sin fracx2cos fracx2$ $ + sqrt 3 cos x = 2$ $ Leftrightarrow sin x + sqrt 3 cos x = 2$ $ Leftrightarrow frac12sin x + frac{sqrt 3 }2cos x = 1$ $ Leftrightarrow sin left( x + frac{pi 3} right) = frac12$ $ Leftrightarrow left[ beginarrayl x = – fracpi 6 + k2pi x = fracpi 2 + k2pi endarray right.$ $left( k in Z right).$ b. Nhận xét: Từ sự xuất hiện của $cot x – tan x$ và $sin 2x$ ta xem chúng có mối quan hệ nào? Ta có: $cot x – tan x$ $ = frac{{{cos ^2}x – {sin ^2}x}}{sin xcos x}$ $ = 2frac{cos 2x}{sin 2x}$. Từ đó ta định hướng giải cho bài toán như sau: Điều kiện: $sin 2x ne 0 Leftrightarrow x ne kfracpi 2.$ $PT Leftrightarrow 2frac{cos 2x}{sin 2x} + 4sin 2x$ $ = frac2{sin 2x}cos 2x + 2sin ^22x = 1$ $ Leftrightarrow 2cos ^22x – cos 2x – 1 = 0$ $ Leftrightarrow left[ beginarrayl cos 2x = 1 cos 2x = – frac12 endarray right.$ $ Leftrightarrow x = pm fracpi 3 + kpi $ $(k∈Z).$Chú ý: Ta có thể đặt $t = tan x$ $ Rightarrow cot x = frac1t$, $sin 2x = frac{2t}{1 – {t^2}}$ đưa phương trình về ẩn $t$ để giải. c. Điều kiện: $sin 2x ne 0 Leftrightarrow x ne kfracpi 2.$ $PT Leftrightarrow frac{sin x}{cos x} – frac{cos x}{sin x} = 2cot ^32x$ $ Leftrightarrow – 2frac{cos 2x}{sin 2x} = 2cot ^32x$ $ Leftrightarrow cot 2x + cot ^32x = 0$ $ Leftrightarrow cot 2x = 0$ $ Leftrightarrow x = fracpi 4 + kfracpi 2$ $(k∈Z).$ d. Điều kiện: $sin 2x ne 0 Leftrightarrow x ne kfracpi 2.$ $PT Leftrightarrow frac{sin x}{cos x} + frac{cos x}{sin x}$ $ = 2left( sin 2x + cos 2x right)$ $ Leftrightarrow frac2{sin 2x} = 2left( sin 2x + cos 2x right)$ $ Leftrightarrow 1 = sin ^22x + sin 2xcos 2x$ $ Leftrightarrow cos ^22x = sin 2xcos 2x$ $ Leftrightarrow left[ beginarrayl cos 2x = 0 tan 2x = 1 endarray right.$ $ Leftrightarrow left[ beginarrayl x = fracpi 4 + kfracpi 2 x = fracpi 8 + kfracpi 2 endarray right.$ $left( k in Z right).$
. Giải các phương trình lượng giác sau: a. $cos ^6x – sin ^6x = frac{13}8cos ^22x.$ b. $frac{2left( {{{cos ^6}x + {sin ^6}x} right) – sin xcos x}}{sqrt 2 – 2sin x} = 0.$ c. $frac{{{cos ^4}x + {sin ^4}x}}{5sin 2x}$ $ = frac12cot 2x – frac1{8sin 2x}.$ d. $cot x = tan x + frac{2cos 4x}{sin 2x}.$
a. Nhận xét: Xuất hiện $cos ^6x – sin ^6x$ ta nghĩ đến việc sử dụng hằng đẳng thức $a^3 – b^3.$ $PT Leftrightarrow left( {{cos ^2}x – {sin ^2}x} right)$$left( {{cos ^4}x + {sin ^4}x + {sin ^2}x{cos ^2}x} right)$ $ = frac{13}8cos ^22x$ $ Leftrightarrow cos 2xleft( 1 – frac{12{sin ^2}2x + frac14{sin ^2}2x} right)$ $ = frac{13}8cos ^22x$ $ Leftrightarrow cos 2xleft( 8 – 2{{sin ^2}2x – 13cos 2x} right) = 0$ $ Leftrightarrow left[ beginarrayl cos 2x = 0 2cos ^22x – 13cos 2x + 6 = 0 endarray right.$ $ Leftrightarrow left[ beginarrayl cos 2x = 0 cos 2x = frac12 endarray right.$ $ Leftrightarrow left[ beginarrayl x = fracpi 4 + kfracpi 2 x = pm fracpi 6 + kpi endarray right.$ $left( k in Z right).$ b. Điều kiện: $sin x ne frac1{sqrt 2 }$ $ Leftrightarrow left begin{arrayl x ne fracpi 4 + k2pi x ne frac{3pi }4 + k2pi endarray right.$ $PT Leftrightarrow 2left( {{cos ^4}x + {sin ^4}x – {sin ^2}x{cos ^2}x} right)$ $ – sin xcos x = 0$ $ Leftrightarrow 2 – 6sin ^2xcos ^2x – sin xcos x = 0$ $ Leftrightarrow 3sin ^22x + sin 2x – 4 = 0$ $ Leftrightarrow sin 2x = 1$ $ Leftrightarrow x = fracpi 4 + kpi $ $(k∈Z).$ Kết hợp với điều kiện ta được nghiệm của phương trình là: $x = frac{5pi }4 + k2pi $ $left( k in Z right).$ c. Điều kiện: $sin 2x ne 0 Leftrightarrow x ne kfracpi 2.$ $PT Leftrightarrow frac{1 – frac{12{sin ^2}2x}}{5sin 2x}$ $ = frac12frac{cos 2x}{sin 2x} – frac1{8sin 2x}$ $ Leftrightarrow cos ^22x – 5cos 2x + frac94 = 0$ $ Leftrightarrow cos 2x = frac12$ $ Leftrightarrow x = pm fracpi 6 + kpi $ $(k∈Z).$ d. Điều kiện: $sin 2x ne 0 Leftrightarrow x ne kfracpi 2.$ $PT Leftrightarrow frac{2cos 2x}{sin 2x} = frac{2cos 4x}{sin 2x}$ $ Leftrightarrow 2cos ^22x – cos 2x – 1 = 0$ $ Leftrightarrow cos 2x = – frac12$ $ Leftrightarrow x = pm frac{2pi }3 + kpi $ $(k∈Z).$
Giải Sbt Toán 12 Bài 1: Hệ Tọa Độ Trong Không Gian
Hướng dẫn làm bài
=(−4;−2;3), =(−9;2;1)
Bài 3.2 trang 102 sách bài tập (SBT) – Hình học 12
Trong không gian Oxyz cho vecto =(1;−3;4)
a) Tìm y 0 và z 0 để cho vecto =(2;y 0;z 0) cùng phương với
Hướng dẫn làm bài:
a) Ta biết rằng và cùng phương khi và chỉ khi =k với k là một số thực. Theo giả thiết ta có:=(x 0;y 0;z 0) với x 0 = 2. Ta suy ra k=1/2 nghĩa là l=1/2x 0
Vậy ta có =(2;−6;8)
b) Theo giả thiết ta có =−2
Do đó tọa độ của là: = (-2; 6; -8)
Bài 3.3 trang 102 sách bài tập (SBT) – Hình học 12
Trong không gian Oxyz cho điểm M có tọa độ (x 0; y 0; z 0). Tìm tọa độ hình chiếu vuông góc của điểm M trên các mặt phẳng tọa độ (Oxy), (Oyz), (Ozx).
Hướng dẫn làm bài:
Gọi M’, M”, M”’ lần lượt là hình chiếu vuông góc của điểm M trên các mặt phẳng (Oxy), (Oyz), (Ozx).
Bài 3.4 trang 102 sách bài tập (SBT) – Hình học 12
Cho hai bộ ba điểm:
a) A = (1; 3; 1), B = (0; 1; 2), C = (0; 0; 1)
b) M = (1; 1; 1), N = (-4; 3; 1), P = (-9; 5; 1)
Hỏi bộ nào có ba điểm thẳng hàng?
Hướng dẫn làm bài:
a) Ta có =(−1;−2;1)
=(−1;−3;0)
Giả sử ta có =k, khi đó k.(−1)=−1;k.(−3)=−2;k.(0)=1
Ta không tìm được số k nào thỏa mãn đồng thời cả ba đẳng thức trên. Vậy ba điểm A, B, C không thẳng hàng.
b) Ta có: =(−5;2;0) và =(−10;4;0). Hai vecto và thỏa mãn điều kiện: =k với k=1/2 nên ba điểm M, N, P thẳng hàng.
Bài 3.5 trang 102 sách bài tập (SBT) – Hình học 12
Trong không gian Oxyz, hãy tìm trên mặt phẳng (Oxz) một điểm M cách đều ba điểm A(1; 1; 1), B(-1; 1; 0), C(3; 1; -1).
Hướng dẫn làm bài:
Điểm M thuộc mặt phẳng (Oxz) có tọa độ là (x; 0; z), cần phải tìm x và z. Ta có:
Theo giả thiết M cách đều ba điểm A, B, C nên ta có MA 2 = MB 2 = MC 2
Từ đó ta tính được M(5/6;0;−7/6)
Bài 3.6 trang 102 sách bài tập (SBT) – Hình học 12
Cho hình tứ diện ABCD. Chứng minh rằng:
Hướng dẫn làm bài:
a) Ta có:
Do đó: +=+ vì =−
b) Vì =+và =+ nên =++
Bài 3.7 trang 102 sách bài tập (SBT) – Hình học 12
ho hình tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, BD, AD, BC. Chứng minh rằng:
Hướng dẫn làm bài:
a) Ta có MPNQ là hình bình hành vì
==1/2 và =PN →=1/2.
Do đó =MQ →+=/2+/2 hay 2=+ (1)
Vì =
Bài 3.8 trang 102 sách bài tập (SBT) – Hình học 12
Trong không gian cho ba vecto tùy ý ,,. Gọi =−2, =3−, =2−3.
Hướng dẫn làm bài:
Muốn chứng tỏ rằng ba vecto , , đồng phẳng ta cần tìm hai số thực p và q sao cho =p+q.
2c →−3=p(−2b →)+q(3−)
{3+p=0;3q−2p=0;q+2=0⇒p=−3;q=−2
Như vậy ta có: =−3−2 nên ba vecto , v →, đồng phẳng.
Bài 3.9 trang 103 sách bài tập (SBT) – Hình học 12
Trong không gian Oxyz cho một vecto tùy ý khác vecto . Gọi α,β,γ là ba góc tạo bởi ba vecto đơn vị ,, trên ba trục Ox, Oy, Oz và vecto . Chứng minh rằng: cos 2α+cos 2β+cos 2 γ=1
Hướng dẫn làm bài:
Bài 3.10 trang 103 sách bài tập (SBT) – Hình học 12
Cho hình tứ diện ABCD.
a) Chứng minh hệ thức:
+.+.. = 0
b) Từ hệ thức trên hãy suy ra định lí: “Nếu một hình tứ diện có hai cặp cạnh đối diện vuông góc với nhau thì cặp cạnh đối diện thứ ba cũng vuông góc với nhau.”
Hướng dẫn làm bài:
a) Ta có
.=(−)=.−. (1)
.=(−)=.−. (2)
.=(−)=.−. (3)
Lấy (1) + (2) + (3) ta có hệ thức cần chứng minh là:
+.+.. = 0
b) Từ hệ thức trên ta suy ra định lí: “Nếu tứ diện ABCD có AB⊥CD,AC⊥DB, nghĩa là . =0 và . =0 thì . = 0 và do đó AD⊥BC.”
Sách Giải Bài Tập Toán Lớp 12 Bài 1: Hệ Tọa Độ Trong Không Gian (Nâng Cao)
Sách giải toán 12 Bài 1: Hệ tọa độ trong không gian (Nâng Cao) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 12 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
a) Tìm tọa độ của vectơ đó;
a) Tìm tọa độ của vectơ đó;
a) Tìm tọa độ của vectơ đó;
a) Tìm tọa độ của vectơ đó;
Lời giải:
Giả sử u → =(a,b,c), ta có:
Lời giải:
Giả sử u → =(a,b,c), ta có:
Lời giải:
Giả sử u → =(a,b,c), ta có:
Lời giải:
Giả sử u → =(a,b,c), ta có:
Bài 5 (trang 81 sgk Hình Học 12 nâng cao): Trong không gian tọa độ Oxyz, cho điểm M (a, b, c).
a) Tìm tọa độ hình chiếu (vuông góc) của M trên các mặt phẳng tọa độ và các trục tọa độ.
b) Tìm khoảng cách từ điểm M đến các mặt tọa độ, đến các trục tọa độ.
c) Tìm tọa độ các điểm đối xứng với M qua các mặt phẳng tọa độ.
a) Hình chiếu của M lên mp(Oxy) tọa độ là: (a, b, 0)
Tương tự, hình chiếu của M lên mp(Oxz) và mp(Oyz) lần lượt có tọa độ là: (a, 0, c) và (0, b, c).
Hình chiếu của M lên các trục Ox, Oy, Oz lần lượt có tọa đố là: (a, 0, 0), (0, b, 0), (0, 0, c)
c) Điểm đối xứng của M = (a, b, c) qua các mặt phẳng (Oxy), (Oxz) và (Oyz) lần lượt có tọa độ là
(a, b, -c); (a, -b, c) và (-a, b, c)
Lời giải:
Suy ra
Bài 8 (trang 81 sgk Hình Học 12 nâng cao):
a) Tìm tọa độ điểm M thuộc Ox sao cho M cách đều hai điểm A(1, 2, 3) và B(-3, -3, 2)
b) Cho ba điểm A(2, 0, 4) và B(4, √3, 5) và C(sin 5t, cos 3t, sin 3t). Tìm t để AB vuông góc với OC (O là gốc tọa độ).
Lời giải:
a) Gọi M = (a, 0, 0) thuộc Ox thỏa mãn MA = MB.
Vậy M = (-1, 0, 0) là điểm cần tìm.
Với k, n ∈ Z
với n, k ∈Z là những giá trị cần tìm.
Lời giải:
a) Ta có
Lời giải:
a) Ta có
Lời giải:
a) Ta có
Lời giải:
a) Ta có
Bài 10 (trang 81 sgk Hình Học 12 nâng cao): Cho ba điểm A(1, 0, 0), B(0, 0, 1), C(2, 1, 1)
a) Chứng minh A, B, C không thẳng hàng.
b) Tìm tọa độ điểm D để ABCD là hình bình hành.
c) Tính độ dài đường cao của tam giác ABC.
d) Tính độ dài đường cao của tam giác ABC kẻ từ đỉnh A.
e) Tính các góc của tam giác ABC.
c) Chu vi ΔABC là: P=AB+BC+AC=√2+√5+√3
Diện tích ΔABC là:
Bài 11 (trang 81 sgk Hình Học 12 nâng cao): Cho bốn điểm A(1, 0, 0), B(0, 1, 0), C(0, 0, 1) và D(-2, 1, -2).
a) Chứng minh rằng A, B, C, D là bốn đỉnh của một hình tứ diện.
b) Tính góc bởi các cạnh đối của tứ diện đó. Tính thể tích tứ diện ABCD và độ dài đường cao của tứ diện kẻ từ đỉnh A.
Lời giải:
b)Ta có:
Bài 12 (trang 82 sgk Hình Học 12 nâng cao): Cho hình chóp chúng tôi có đường cao SA = h, đáy là tam giác ABC vuông tạo C, AC = b, Bc = a. gọi M là trung điểm của AC và N là trung điểm sao cho:
a) Tính độ dài MN.
b) Tìm sự liên hệ giữa a, b, h để MN vuông góc với SB.
Lời giải:
Chọn hệ trục tọa độ Oxyz sao cho: gốc tọa độ O trùng với A, Ox là tia AC. Khi đó, ta có:
A = (0, 0, 0), B(b, a, 0), C = (b, 0, 0), S = (0, 0, h) và
SB → =(b,a,-h)
a) Ta có
Bài 13 (trang 82 sgk Hình Học 12 nâng cao): Tìm tọa độ tâm và bán kính mặt cầu sau đây:
Lời giải:
Nên mặt cầu có tâm la I(4, -1, 0) và bán kính R = 4.
Nên mặt cầu có tâm là I = (1/3; -1,0) và bán kính R = 1.
Bài 14 (trang 82 sgk Hình Học 12 nâng cao): Trong mỗi trường hợp sau, viết phương trình mặt cầu:
a) Đi qua ba điểm A(0, 8, 0), B(4, 6, 2), C(0, 12, 4) và có tâm nằm trên mp(Oyz).
b) Có bán kính bằng 2, tiếp xúc với mặt phẳng (Oyz) và có tâm nằm trên tia Ox.
c) Có tâm I(1, 2, 3) và tiếp xúc với mp(Oyz).
Lời giải:
a) Vì tâm mặt cầu nằm trên mp(Oyz) nên ta gọi tâm mặt cầu là I = (0, b, c).
Vì cầu đi qua A, B, C nên ta có hệ:
c) Vì mặt cầu tiếp xúc với mặt phẳng (Oyz) và có tâm I(1, 2, 3) nên ta có bán kính mặt cầu là: R = d(I, (Oyz)) = 1
Bạn đang đọc nội dung bài viết Tích Phân Hai Lớp Trong Tọa Độ Cực. Công Thức Đổi Biến trên website Asianhubjobs.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!