Top 14 # Xem Nhiều Nhất Giải Bài Tập Toán Mệnh Đề Trang 9 Mới Nhất 6/2023 # Top Like | Asianhubjobs.com

Giải Toán 10 Bài 1: Mệnh Đề

Giải SGK Toán 10 chương 1

Giải bài tập Toán lớp 10 (Đại số) chương 1: Mệnh đề hướng dẫn các bạn học sinh giải các bài tập trang 9, 10 trong sách giáo khoa đại số lớp 10. Hi vọng hướng dẫn giải bài tập Toán 10 này sẽ giúp các bạn học ôn tập và củng cố kiến thức hiệu quả, hoàn thành tốt các bài tập trên lớp và về nhà, học tốt môn Toán lớp 10.

Giải Toán lớp 10 (Đại số) chương 1

Ngoài ra, chúng tôi đã thành lập group chia sẻ tài liệu học tập THCS miễn phí trên Facebook: Tài liệu học tập lớp 10. Mời các bạn học sinh tham gia nhóm, để có thể nhận được những tài liệu mới nhất.

Giải bài tập TOÁN LỚP 10 – MỆNH ĐỀ

Giải bài tập Toán 10 Bài 1

Trong các câu sau, câu nào là mệnh đề, câu nào là mệnh đề chứa biến?

Hướng dẫn giải:

a) Mệnh đề sai;

b) Mệnh đề chứa biến;

c) Mệnh đề chứa biến;

d) Mệnh đề đúng.

Giải bài tập Toán 10 Bài 2

Xét tính đúng sai của mỗi mệnh đề sau và phát biểu mệnh đề phủ định của nó.

a) 1794 chia hết cho 3;

b)

c) π < 3,15;

Hướng dẫn giải:

a) Đúng. Mệnh đề phủ định: “1794 không chia hết cho 3”.

b) Sai. “

c) Đúng. “π không nhỏ hơn 3, 15”. Dùng kí hiệu là: π ≥ 3,15.

Giải bài tập Toán 10 Bài 3. Cho các mệnh đề kéo theo

Nếu a và b cùng chia hết cho c thì a+b chia hết cho c (a, b, c là những số nguyên).

Các số nguyên có tận cùng bằng 0 đều chia hết cho 5.

Tam giác cân có hai đường trung tuyến bằng nhau.

Hai tam giác bằng nhau có diện tích bằng nhau.

a) Hãy phát biểu mệnh đề đảo của mỗi mệnh đề trên.

b) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niện “điều kiện đủ”.

c) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niện “điều kiện cần”.

Hướng dẫn giải:

a) Nếu a + b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.

Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.

Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.

Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.

b) a và b chia hết cho c là điều kiện đủ để a + b chia hết cho c.

Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.

Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.

Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.

c) a + b chia hết cho c là điều kiện cần để a và b chia hết cho c.

Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.

Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.

Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.

Giải bài tập Toán 10 Bài 4

Phát biểu mỗi mệnh đề sau, bằng cách sử dụng khái niệm “điều kiện cần và đủ”

a) Một số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và ngược lại.

b) Một hình bình hành có các đường chéo vuông góc là một hình thoi và ngược lại.

c) Phương trình bậc hai có hai nghiệm phân biệt khi và chỉ khi biệt thức của nó dương.

Hướng dẫn giải:

a) Điều kiện cần và đủ để một số chia hết cho 9 là tổng các chữ số của nó chia hết cho 9.

b) Điều kiện cần và đủ để tứ giác là hình thoi là tứ giác là hình bình hành có hai đường chéo vuông góc với nhau.

c) Điều kiện cần và đủ để phương trình bậc hai có hai nghiệm phân biệt là biệt thức của nó dương.

Giải bài tập Toán 10 Bài 5. Dùng kí hiệu ∀, ∃ để viết các mệnh đề sau

a) Mọi số nhân với 1 đều bằng chính nó;

b) Có một số cộng với chính nó bằng 0;

c) Một số cộng với số đối của nó đều bằng 0.

Hướng dẫn giải:

a) ∀x ∈ R: x.1 = x;

b) ∃ x ∈ R: x + x = 0;

c) ∀x∈ R: x + (-x)= 0.

Giải bài tập Toán 10 Bài 6

Phát biểu thành lời mỗi mệnh đề sau và xét tính đúng sai của nó

c) ∀n ∈ N: n ≤ 2n;

d) ∃ x ∈ R: x < 1/x.

b) ∃ n ∈ N: n 2 = n = “Có số tự nhiên n bằng bình phương của nó”. Đúng vì 1 ∈ N, 1 2 = 1.

c) ∀n ∈ N: n ≤ 2n = “Một số tự nhiên thì không lớn hơn hai lần số ấy”. Đúng.

d) ∃ x ∈ R: x < 1/x = “Có số thực x nhỏ hơn nghịch đảo của nó”. Mệnh đề đúng, chẳng hạn 0,5 ∈ R và 0,5 < 1/0,5.

Giải bài tập Toán 10 Bài 7

Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai cuả nó.

a) ∀n ∈ N: n chia hết cho n;

c) ∀x ∈ R: x < x +1 ;

d) ∃x ∈ R: 3x = x 2 + 1;

Hướng dẫn giải:

a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n = 0 ∈ N, 0 không chia hết cho 0.

b) ∃x ∈ Q: x 2 = 2 = “Bình phương của một số hữu tỉ là một số khác 2”. Mệnh đề đúng.

c) ∀x ∈ R: x < x +1 = ∃x ∈ R: x ≥ x + 1 = “Tồn tại số thực x không nhỏ hơn số ấy cộng với 1”. Mệnh đề này sai.

d) ∃x ∈ R: 3x = x 2 + 1 = ∀x ∈ R: 3x ≠x 2 + 1 = “Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x”

Đây là mệnh đề sai vì với x =

Bài tiếp theo: Giải bài tập SGK Toán lớp 10 (Đại số) chương 1: Tập hợp

Sách Giải Bài Tập Toán Lớp 10 Bài 1: Mệnh Đề Và Mệnh Đề Chứa Biến (Nâng Cao)

Sách giải toán 10 Bài 1: Mệnh đề và mệnh đề chứa biến (Nâng Cao) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 10 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

a) Hãy đi nhanh lên!;

b) 5 + 4 + 7 = 15;

c) Năm 2002 là năm nhuận.

Lời giải:

Các câu b) và c) là mệnh đề, ở đó c) là mệnh đề đúng còn b) là mệnh đề sai. Câu a) không phải là mệnh đề.

Bài 2 (trang 9 sgk Đại Số 10 nâng cao): Nếu mệnh đề phủ định của mỗi mệnh đề sau và xác định xem mệnh đề phủ định đó đúng hay sai.

a) Phương trình x 2 – 3x + 2 = 0 có nghiệm;

c) Có vô số số nguyên tố.

Lời giải:

a) Mệnh đề phủ định là: “phương trình x 2 – 3x + 2 = 0 vô nghiệm”. Đây là một mệnh đề sai vì phương trình x 2 – 3x + 2 = 0 có hai nghiệm là x 1 = 1, x 2 = 2.

b) Mệnh đề phủ định là: “2 10 – 1 không chia hết cho 11″. Đây là mệnh đề đúng vì 2 10 – 1 = 1023 chia hết cho 11.

c) Mệnh đề phủ định là: “Có hữu hạn các số nguyên tố”. Đây là mệnh đề sai.

Bài 3 (trang 9 sgk Đại Số 10 nâng cao): Cho tứ giác ABCD. Xét hai mệnh đề:

P: “Tứ giác ABCD là hình vuông”.

Q: “Tứ giác ABCD là hình chữ nhật có hai đường chéo vuông góc”.

Phát biểu mệnh đề, P ⇔ Q bằng hai cách và cho biết mệnh đề đó đúng hay sai.

Lời giải:

Phát biểu mệnh đề P ⇔ Q bằng hai cách.

Cách 1. “Tứ giác ABCD là hình vuông khi và chỉ khi tứ giác ABCD là hình chữ nhật có hai đường chéo vuông góc”.

Cách 2. “Tứ giác ABCD là hình vuông nếu và chỉ nếu tứ giác ABCD là hình chữ nhật có hai đường chéo vuông góc”.

Mệnh đề P ⇔ Q là mệnh đề đúng.

Bài 4 (trang 9 sgk Đại Số 10 nâng cao): Cho mệnh đề chứa biến P(n): “n2 – 1 chia hết cho 4″, với n là số nguyên. Xét xem mệnh đề P(5) và P(2) đúng hay sai.

Lời giải:

Mệnh đề P(5): “5 2 – 1 chia hết cho 4″ là mệnh đề đúng, mệnh đề P(2): “2 2 – 1 chia hết cho 4″ là mệnh đề sai.

Bài 5 (trang 9 sgk Đại Số 10 nâng cao): Xét xem các mệnh đề sau đúng hay sai và nêu mệnh đề phủ định của mỗi mệnh đề đó:

a) ∀n ∈ N*, n 2 – 1 là bội số của 3;

d) 3n ∈ N, 2n + 1 là số nguyên tố.

e) ∀n ∈ N, 2n ≥ n + 2

Lời giải:

a) Mệnh đề sai (chẳng hạn, với n = 3 thì 32 – 1 = 8 không là bội số của 3). Ta có mệnh đề phủ định: “∃n ∈ N*, n 2 – 1 không là bội số của 3″.

Ta có mệnh đề phủ định: “∃x ∈ R, x 2 – x + 1 ≤ 0)”.

c) Mệnh đề sai (mệnh đề này có nghĩa là √3 là một số hữu tỷ). Mệnh đề phủ định: “∀x ∈ Q, x 2 ≠ 3″.

d) Mệnh đề đúng (chẳng hạn n = 2, khi đó 22 + 1 = 5 là số nguyên tố). Mệnh đề phủ định: “∀n ∈ N, 2n + 1 là hợp số”.

e) Mệnh đề sai (chẳng hạn với n = 1 thì 21 < 1 + 2 = 3). Mệnh đề phủ định là: “∃n ∈ N, 2n < n + 2”.

Giải Bài Tập Sgk Bài 1: Mệnh Đề

Chương I: Mệnh Đề – Tập Hợp – Đại Số Lớp 10

Bài 1: Mệnh Đề

Tóm Tắt Lý Thuyết

1. Mệnh đề. Mệnh đề chứa biến 2. Phủ định của một mệnh đề 3. Mệnh đề kéo theo 4. Mệnh đề đảo – Hai mệnh đề tương đương 5. Kí hiệu ∀ và ∃

Các Bài Tập & Lời Giải Bài Tập SGK Bài 1 Mệnh Đề

Bài Tập 1 Trang 9 SGK Đại Số Lớp 10

Trong các câu sau, câu nào là mệnh đề, câu nào là mệnh đề chứa biến?

a) 3 + 2 = 7;

b) 4 + x = 3;

d) (2 – sqrt5 < 0).

Bài Tập 2 Trang 9 SGK Đại Số Lớp 10

Xét tính đúng sai của mỗi mệnh đề sau và phát biểu mệnh đề phủ định của nó.

a) 1794 chia hết cho 3;

b) (sqrt{2}) là một số hữu tỉ:

c) π < 3,15

Bài Tập 3 Trang 9 SGK Đại Số Lớp 10

Cho các mệnh đề kéo theo

Nếu a và b cùng chia hết cho c thì a + b chia hết cho c (a,b,c là những số nguyên).

Các số nguyên có tận cùng bằng 0 đều chia hết cho 5.

Tam giác cân có hai đường trung tuyến bằng nhau.

Hai tam giác bằng nhau có diện tích bằng nhau.

a) Hãy phát biểu mệnh đề đảo của mỗi mệnh đề trên.

b) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niệm “điều kiện đủ”.

c) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niệm “điều kiện cần”.

Bài Tập 4 Trang 9 SGK Đại Số Lớp 10

Phát biểu mỗi mệnh đề sau, bằng cách sử dụng khái niệm “điều kiện cần và đủ”

a) Một số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và ngược lại.

b) Một hình bình hành có các đường chéo vuông góc là một hình thoi và ngược lại.

c) Phương trình bậc hai có hai nghiệm phân biệt khi và chỉ khi biệt thức của nó dương.

Bài Tập 5 Trang 10 SGK Đại Số Lớp 10

Dùng kí hiệu ∀, ∃ để viết các mệnh đề sau

a) Mọi số nhân với 1 đều bằng chính nó;

b) Có một số cộng với chính nó bằng 0;

c) Mọt số cộng vớ số đối của nó đều bằng 0.

Bài Tập 6 Trang 10 SGK Đại Số Lớp 10

Phát biểu thành lời mỗi mệnh đề sau và xét tính đúng sai của nó

b) (∃n ∈ N: n^2 = n);

c) ∀ n ∈ N: n ≤ 2n

d) (∃x ∈ R: < frac{1}{x}).

Bài Tập 7 Trang 10 SGK Đại Số Lớp 10

Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của nó.

a) ∀n ∈ N: n chia hết cho n;

b) ∃x ∈ Q: ()(x^2=2)

c) ∀x ∈ R: x < x+1

d) (∃x ∈ R: 3x=x^2+1)

Lời kết: Nội dung bài học bài 1 mệnh đề chương I đại số lớp 10 sẽ cho các bạn làm quen dần với lý thuyết và ký hiệu. Các bạn cần lưu ý các ý chính sau:

– Các khái niệm mệnh đề, mệnh đề chứa biến, và phủ định của mệnh đề – Mệnh đề kéo theo là gì, mệnh đề đảo và hai mệnh đề tương đương – Ký hiệu

Các bạn đang xem Bài 1: Mệnh Đề thuộc Chương I: Mệnh Đề – Tập Hợp tại Đại Số Lớp 10 môn Toán Học Lớp 10 của chúng tôi Hãy Nhấn Đăng Ký Nhận Tin Của Website Để Cập Nhật Những Thông Tin Về Học Tập Mới Nhất Nhé.

Giải Bài 1,2,3 Trang 9 Đại Số Lớp 10 : Bài Tập Mệnh Đề

Hướng dẫn giải, đáp án bài tập 1,2,3 trang 9 sách giáo khoa đại số lớp 10. Các bài tập về mệnh đề.

A. Tóm tắt kiến thức

Nếu các em chưa lắm rõ

Lý thuyết về mệnh đề – Chương 1 mệnh đề tập hợp – Đại số lớp 10. Tóm tắt kiến thức:

1. Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.

2. Mệnh đề chứa biến là câu khẳng định mà sự đúng đắn, hay sai của nó còn tùy thuộc vào một hay nhiều yếu tố biến đổi.

Ví dụ: Câu “Số nguyên n chia hết cho 3” không phải là mệnh đề, vì không thể xác định được nó đúng hay sai.

Nếu ta gán cho n giá trị n= 4 thì ta có thể có một mệnh đề sai.

Nếu gán cho n giá trị n=9 thì ta có một mệnh đề đúng.

5. Mệnh đề đảo

6. Mệnh đề tương đương

Khi A ⇔ B, ta cũng nói A là điều kiện cần và đủ để có B hoặc A khi và chỉ khi B hay A nếu và chỉ nếu B.

7. Kí hiệu ∀, kí hiệu ∃

Cho mệnh đề chứa biến: P(x), trong đó x là biến nhận giá trị từ tập hợp X.

– Câu khẳng định: Với x bất kì tuộc X thì P(x) là mệnh đề đúng được kí hiệu là: ∀ x ∈ X : P(x).

– Câu khẳng định: Có ít nhất một x ∈ X (hay tồn tại x ∈ X) để P(x) là mệnh đề đúng kí hiệu là ∃ x ∈ X : P(x).

B.Giải bài tập Toán Đại lớp 10 trang 9.

Bài 1. Trong các câu sau, câu nào là mệnh đề, câu nào là mệnh đề chứa biến?

a) 3 + 2 = 7;

b) 4 + x = 3;

d) 2 – √5 < 0.

Đáp án: a) Mệnh đề sai;

b) Mệnh đề chứa biến;

c) Mệnh đề chứa biến;

d) Mệnh đề đúng.

Bài 2. Xét tính đúng sai của mỗi mệnh đề sau và phát biểu mệnh đề phủ định của nó.

a) 1794 chia hết cho 3;

b) √2 là một số hữu tỉ:

c) π < 3,15;

Đáp án: a) Đúng. Mệnh đề phủ định: “1794 không chia hết cho 3”.

b) Sai. “√2 không phải là một số hữu tỉ”.

c) Đúng. “π không nhỏ hơn 3, 15”. Dùng kí hiệu là: π ≥ 3,15 .

Bài 3. Cho các mệnh đề kéo theo

Nếu a và b cùng chia hết cho c thì a+b chia hết cho c (a, b, c là những số nguyên).

Các số nguyên có tận cùng bằng 0 đều chia hết cho 5.

Tam giác cân có hai đường trung tuyến bằng nhau.

Hai tam giác bằng nhau có diện tích bằng nhau.

a) Hãy phát biểu mệnh đề đảo của mỗi mệnh đề trên.

b) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niện “điều kiện đủ”.

c) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niện “điều kiện cần”.

Hướng dẫn giải bài 3:

a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.

Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.

Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.

Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.

b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.

Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.

Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.

Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.

c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.

Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.

Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.

Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.