Top 9 # Xem Nhiều Nhất Giai Bt Cong Nghe 8 Bai 4 Mới Nhất 6/2023 # Top Like | Asianhubjobs.com

Cong Ty Cong Nghe Tin Hoc Nha Truong

Trước khi đọc bài viết này, nếu bạn chưa có khái niệm gì về ma trận, bạn có thể tham khảo định nghĩa về ma trận trong một tài liệu khác.

Trước hết, tôi xin nhắc lại tóm tắt khái niệm về phép nhân ma trận:

Cho 2 ma trận: A kích thước MxN và B kích thước NxP.

Kết quả phép nhân ma trận A và B là ma trận C kích thước MxP, với mỗi phần tử của ma trận C được tính theo công thức:

Để thực hiện phép nhân ma trận trên máy tính, ta có thể thực hiện thuật toán với độ phức tạp O(MNP) như sau:

for i:=1 to M do

for j:=1 to P do

begin

C[i,j]:=0;

for k:=1 to N do

C[i,j]:=C[i,j]+A[i,k]*B[k,j];

end;

(đối với phép nhân các ma trận vuông kích thước NxN, có thuật toán nhân ma trận Strassen với độ phức tạp O(N log7) theo tư tưởng chia nhỏ ma trận (giống với cách nhân nhanh 2 số lớn)) tuy nhiên cài đặt rất phức tạp và nói chung không cần thiết. Thông thường, với các bài toán chúng ta gặp, phép nhân ma trận có độ phức tạp O(N 3) là đủ).

Cần chú ý thêm là phép nhân ma trận không có tính giao hoán (do có thể thực hiện nhân 2 ma trận A kích thước MxN và ma trận B kích thước NxP nhưng không thể thực hiện phép nhân B*A nếu P ≠ M) nhưng có tính kết hợp:

(A*B)*C = A*(B*C)

Ví dụ 1:

Dãy Fibonacci được định nghĩa như sau:

F0= 1 F1= 1 ³ 2)

Yêu cầu: Cho N (N ≤ 10 9), tính FN

Phân tích:

Hiển nhiên cách làm thông thường là tính lần lượt các Fi . Tuy nhiên, cách làm này hoàn toàn không hiện quả với N lên đến 10 9, và ta cần một cách tiếp cận khác:

Ta xét các lớp số:

Ta hình dung mỗi lớp là một ma trận 1×2. Tiếp đó, ta sẽ biến đổi từ lớp i-1 đến lớp i. Sau mỗi lần biến đổi như vậy, ta tính thêm được Fi+1 . Để thực hiện phép biến đổi này, chú ý là các số ở lớp sau chỉ phụ thuộc vào lớp ngay trước nó theo các phép cộng, ta tìm được cách biến đổi bằng nhân ma trận:

(Chắc hẳn đọc đến đây bạn đọc sẽ thắc mắc, làm thế nào để tìm được ma trận

Để tìm được ma trận này, ta làm như sau:

Ta có:

nên hàng đầu của ma trận là 0 1

nên hàng hai của ma trận là 1 1 )

Ví dụ 2:

Tiếp theo, chúng ta sẽ cùng xem xét một ví dụ tổng quát hơn của ví dụ 1.

Cho số nguyên N (N ≤ 100) và 2 dãy số ;. Dãy số c được định nghĩa như sau:

Yêu cầu: Tính ck với k ≤ 10 9.

(Nguồn bài: http://www.spoj.pl/problems/SEQ/ . Sau khi code các bạn có thể vào http://www.spoj.pl/register/ để đăng ký thành viên và gửi bài để kiểm tra tính đúng đắn của bài làm của mình)

Phân tích:

Cũng như trong ví dụ 1, ta xét các lớp số:

Lớp 1: c1 , c2 , …, cN

Lớp 2: c2 , c3 , …, cN+1

Lớp i: ci , ci+1 , …, ci+N-1

Ta cũng sẽ áp dụng phép nhân ma trận để biến đổi từ lớp i sang lớp i+1 như sau:

(Để xây dựng ma trận vuông như trên, ta thực hiện tương tự như trong ví dụ trước:

Phân tích ai+1 đến ai+N dưới dạng ai đến ai+N-1

ai+1= 0*ai + 1*ai+1 + … + 0*ai+N-1 nên hàng 1 là 0 1 0 … 0

ai+N-1= 0*ai + 0*ai+1 + … + 1*ai+N-1 nên hàng N-1 là 0 0 0 … 1

ai+N= bN*ai + bN-1*ai+1+ … + b1*ai+N-1 nên hàng N là )

Từ đó, ta thu được cách làm như trong ví dụ 1. Cài đặt cụ thể xin nhường lại cho bạn đọc.

Chú ý rằng ta hoàn toàn có thể thay thế phép nhân và phép cộng trong định nghĩa phép nhân ma trận. Cụ thể hơn, thay vì , ta có thể tính . Từ đó, ta có thể thu được một lớp các bài toán khác.

Ví dụ 3:

Phân tích:

Xét ma trận A là ma trận kề của đồ thị đã cho. Hiển nhiên A = C 1

C 2[i,j] = min (A[i,u] + A[u,j]) với u chạy từ 1 đến N

C k[i,j] = min (C k-1[i,u] + A[u,j]) với u chạy từ 1 đến N

Như vậy, nếu ta thay phép nhân và phép cộng trong việc nhân ma trận thông thường lần lượt bởi phép cộng và phép lấy min, ta thu được một phép “nhân ma trận” mới, tạm ký hiệu là Ä , thì

Như vậy, bài toán được đưa về bài toán tính lũy thừa của một ma trận, ta hoàn toàn có thể giải tương tự các ví dụ trước. Cài đặt phép nhân ma trận mới này hoàn toàn không phức tạp hơn cài đặt phép nhân ma trận thông thường. Việc cài đặt xin nhường lại cho bạn đọc.

Ví dụ 4:

Tóm tắt đề:

Người ta mới tìm ra một loại vi khuẩn mới. Chúng sống thành N bầy (N ≤ 100), đánh số từ 0 đến N-1. Ban đầu, mỗi bầy này chỉ có một con vi khuẩn. Tuy nhiên, mỗi giây, số lượng vi khuẩn trong các bầy lại có sự thay đổi. Ví dụ: một bầy có thể bị chết đi, số lượng vi khuẩn trong một bầy có thể tăng lên, hoặc một bầy có thể di chuyển vị trí. Các thay đổi này tuân theo một số quy luật cho trước. Tại mỗi giây chỉ xảy ra một quy luật. Các quy luật này được thực hiện nối tiếp nhau và theo chu kỳ. Có nghĩa là, nếu đánh số các quy luật từ 0 đến M-1, tại giây thứ S thì quy luật được áp dụng sẽ là (S-1) mod M (M ≤ 1000)

Nhiệm vụ của bạn là tìm xem, với một bộ các quy luật cho trước, sau T đơn vị thời gian (T ≤ 10 18), mỗi bầy có bao nhiêu vi khuẩn.

Các loại quy luật có thể có:

A i 0: Tất cả các vi khuẩn thuộc bầy i chết.

B i k: Số vi khuẩn trong bầy i tăng lên k lần

C i j: số vi khuẩn bầy thứ i tăng lên một số lượng = số vi khuẩn bầy j

D i j: Các vi khuẩn thuộc bầy j di chuyển toàn bộ sang bầy i

E i j: Các vi khuẩn thuộc bầy i và bầy j đổi vị trí cho nhau

F 0 0: Vị trí các vi khuẩn di chuyển trên vòng tròn.

(IPSC 2003)

Phân tích

Cách làm đơn giản nhất là chúng ta mô phỏng lại số lượng vi khuẩn trong mỗi bầy qua từng đơn vị thời gian. Cách làm này có độ phức tạp O(T*N*(độ phức tạp xử lý số lớn)) và không thể chạy được với những test lớn.

Ta hình dung số lượng vi khuẩn trong mỗi bầy trong một đơn vị thời gian là một dãy số. Như vậy, mỗi quy luật cho trước thực chất là một phép biến đổi từ một dãy số thành một dãy số mới, và ta hoàn toàn có thể thực hiện biến đổi này bằng một phép nhân ma trận.

Cụ thể hơn, ta coi số lượng vi khuẩn trong N bầy tại một thời điểm xác định là một ma trận 1xN, và mỗi phép biến đổi là một ma trận NxN. Khi áp dụng mỗi phép biến đổi, ta nhân hai ma trận nói trên với nhau.

Bây giờ, xét trường hợp N = 4, tôi xin lần lượt mô tả các ma trận tương ứng với các phép biến đổi:

Cũng như các bài toán trước, ta sẽ cố gắng áp dụng việc tính toán lũy thừa, kết hợp với phép nhân ma trận để giảm độ phức tạp từ T xuống logT. Tuy nhiên, có thể thấy việc sử dụng phép lũy thừa trong bài toán này phần nào phức tạp hơn bởi các ma trận được cho không giống nhau. Để giải quyết vấn đề này, ta làm như sau:

Nguyễn Thành Trung

Gọi là các ma trận tương ứng với các phép biến đổi được cho. Đặt . Đặt (dãy số lượng vi khuẩn tại thời điểm đầu tiên). Như vậy , là ma trận thể hiện số lượng vi khuẩn tại thời điểm M*t + r. Như vậy, thuật toán đến đây đã rõ. Ta phân tích T = M*t + r, nhờ đó, ta có thể giải quyết bài toán trong O(N 3 * M) cho bước tính ma trận X, O(N 3*(log(T/M)+M) cho bước tính Y. Bài toán được giải quyết.

School@net

Bt Va Pp Giai Bt Este Hay

TRANSCRIPT

Trng THPT Anh sn 3 2011

Ti liu n thi i hc nm 2010-

CHUYN V ESTE- LIPITA. KIN THC C BN CN chúng tôi thc tng qut ca este: * Este no n chc: CnH2n+1COOCmH2m+1 (n 0, m 1) Nu t x = n + m + 1 th CxH2xO2 (x 2) R C O R’ * Este a chc to t axit n chc v ru a chc: (RCOO)nR * Este a chc to t axit a chc v ru n chc R(COOR)n O Tn gi ca este hu c:

gc axit

gc ru

Trng THPT Anh sn 3 2011

Ti liu n thi i hc nm 2010-

Trng THPT Anh sn 3 Ti liu n thi i hc nm 20102011 21 Thu phn hon ton 13,2 gam este no, n chc, mch h X vi 100ml dung dch NaOH 1,5M (va ) thu c 4,8 gam mt ancol Y. Tn gi ca X l A. Etyl fomat B. Etyl axetat C. Metyl propionat D. Propyl axetat 22. Thu phn hon ton mt este no, n chc, mch h X vi 200ml dung dch NaOH 2M (va ) thu c 18,4 gam ancol Y v 32,8 gam mt mui Z. Tn gi ca X l A. Etyl fomat B. Etyl axetat C. Metyl axetat D. Propyl axetat 23. Thu phn este X c CTPT C4H8O2 trong dung dch NaOH thu c hn hp hai cht hu c Y v Z trong Y c t khi hi so vi H2 l 16. X c cng thc l A. HCOOC3H7 B. CH3COOC2H5 C. HCOOC3H5 D. C2H5COOCH3

Ch s axt ca cht bo: L s miligam KOH cn trung ho lng axit bo t do c trong 1 gam cht bo. V(ml). CM. 56 Cng thc:

Ch s axt =

mcht bo(g) Ch s x phng ho ca cht bo: l tng s miligam KOH cn trung ho lng axit tdo v x phng ho ht lng este trong 1 gam cht bo Cng thc:

V(ml). CM. 56 mcht bo(g)

Ch s x phng =

28. X phng ho hon ton 2,5g cht bo cn 50ml dung dch KOH 0,1M. Ch s x phng ho ca cht bo l: A. 280 B. 140 C. 112 D. 224 29. Muon trung hoa 5,6 gam mot chat beo X o can 6ml dung dch KOH 0,1M . Hay tnh ch so axit cua chat beo X va tnh lng KOH can trung hoa 4 gam chat beo co ch so axit bang 7 ? A. 4 va 26mg KOH B. 6 va 28 mg KOH C. 5 va 14mg KOH D. 3 va 56mg KOH Siu tm v bin son: Nguyn Vn X 3

Trng THPT Anh sn 3 Ti liu n thi i hc nm 20102011 30. Mun trung ho 2,8 gam cht bo cn 3 ml dd KOH 0,1M. Ch s axit ca cht bo l A.2 B.5 C.6 D.10 31. trung ho 4 cht bo c ch s axit l 7. Khi lng ca KOH l: A.28 mg B.280 mg C.2,8 mg D.0,28 mg 32. trung ho 14 gam mt cht bo cn 1,5 ml dung dch KOH 1M. Ch s axit ca cht bo l A. 6 B. 5 C. 7 D. 8 33. trung ha lng axit t do c trong 14 gam mt mu cht bo cn 15ml dung dch KOH 0,1M. Ch s axit ca mu cht bo trn l (Cho H = 1; O = 16; K = 39) A. 4,8 B. 6,0 C. 5,5 D. 7,2 34. x phng ho hon ton 2,52g mt lipt cn dng 90ml dd NaOH 0,1M. Tnh ch s x phng ca lipit A. 100 B. 200 C. 300 D. 400 35. trung ho axt t do c trong 5,6g lipt cn 6ml dd NaOH 0,1M. Ch s axt ca cht bo l: A. 5 B. 6 C. 5,5 D. 6,5

Siu tm v bin son: Nguyn Vn X

4

Trng THPT Anh sn 3 2011

Ti liu n thi i hc nm 2010-

DANG chúng tôi HAI CHT HU C N CHC (MCH H) TC DNG VI KIM TO RA 1. Hai mui v mt ancol th 2 cht hu c c th l: RCOOR ‘ RCOOR ‘ (1) hoc (2) R1COOR ‘ R1COOH – nancol = nNaOH hai cht hu c cng thc tng qut (1) – nancol < nNaOH hai cht hu c cng thc tng qut (2) VD1: Mt hn hp X gm hai cht hu c. Cho hn hp X phn ng va vi dung dch KOH th cn ht 100 ml dung dch KOH 5M. Sau phn ng thu c hn hp hai mui ca hai axit no n chc v c mt ru no n chc Y. Cho ton b Y tc dng vi Natri c 3,36 lt H2 (ktc). Hai hp cht hu c thuc loi cht g? HD Theo ta c: nKOH = 0,1.5 = 0,5 mol Ancol no n chc Y: CnH2n+1OH 1 CnH2n+1OH + Na CnH2n+1ONa + H2 2 0,3 mol 0,15 mol Thu phn hai cht hu c thu c hn hp hai mui v mt ancol Y vi nY < nKOH Vy hai cht hu c l: este v axit VD2: Hn hp M gm hai hp cht hu c mch thng X v Y ch cha (C, H, O) tc dng va ht 8 gam NaOH thu c ru n chc v hai mui ca hai axit hu c n chc k tip nhau trong dy ng ng. Lng ru thu c cho tc dng vi natri d to ra 2,24 lt kh H2 (ktc). X, Y thuc lai hp cht g? HD nNaOH = 0,2 mol nAncol = 0,2 mol Thu phn hai cht hu c X, Y v thu c s mol nAncol = nNaOH. Vy X, Y l hai este. 2. Mt mui v mt ancol th hai cht hu c c th l: – Mt este v mt ancol c gc hidrocacbon ging ru trong este: RCOOR1 v R1OH – Mt este v mt axit c gc hidrocacbon ging trong este: RCOOR1 v RCOOH – Mt axit v mt ancol. 3. Mt mui v hai ancol

Bai Tap Anken Hd Giai Nhanh

CHUYÊN ĐỀ ANKEN ( CTPT: CnH2n n ≥ 2 )I. Lí THUYẾT ANKEN: I- Tính chất vật lí: – Tương tự ankan, nhiều tính chất vật lí của anken biến đổi tương tự ankan theo độ dài của mạch cũng như sự phân nhánh.– Ơ các đồng phân hình học, dạng trans có điểm nóng chảy cao hơn và điểm sôi thấp hơn so với dạng Cis.II- Tính chất hoá họC. – Tính chất đặc trưng nhất của anken là khuynh hướng đi vào phản ứng cộng, ở các phản ứng này liên kết đứt ra để hai nhóm mới gắn vào và cho một hợp chất no: – Một đặc điểm nổi bật của anken là mật độ electron tập trung tương đối cao giữa hai nguyên tử cacbon của nối đôi C = C và trải rộng ra theo hai phía của liên kết ( .Vì vậy các tác nhân mang điện dương tác dụng đặc biệt dễ dàng vào nối đôi C = C. .Phản ứng cộng vào nối đôi chủ yếu là tác nhân mang điện dương và sau nữa là cộng theo cơ chế gốc1. Các phản ứng cộng. A. Phản ứng công tác nhân đối xứng (H2 , X2 …) + Cộng H2 : Tạo thành ankan tương ứng (Anken có mạch C dàng nào thì ankan có dạng mạch đó) CnH2n + H2 ( CnH2n+2 Chú ý dạng : + Cộng X2 : CnH2n + Br2 ( CnH2nBr2 Chú ý phải viết dạng công thức cấu tạo Phản ứng này được dùng để nhận biệt các hợp chất có liên kết đôi.+) Cộng tác nhân bất đối xứng HX ( Với X là Halozen, – OH ….) Nếu anken đối xứng thì sản phẫm chỉ có 1 sản phẫm ( Khi 1 anken cộng HX thu được 1 sản phẫm thì anken có cấu tạo đối xứng + Nếu anken bất đối xứng R1 – CH = CH – R2 Khi cộng tác nhân bất đối xứng vào anken bất đối xứng thì tuân theo quy tắc Maccopnhicop:Khi cộng tác nhân bất đối xứng vào anken bất đối xứng thì phần mang điện tích dương (H+) ưu tiên cộng vào cacbon bậc thấp ( nhiều hiđro hơn) còn tác nhân mang điện tích âm ưu tiên cộng vào cacbon còn lại của liên kết đôi ( ít hiđro hơn). * Cộng nước:

* Cộng axit HX

* Cộng axit HXO : Axit hipohalogenơ cộng hợp vào nối đôi C = C của anken cho ta ankylclohiđrin

2. Phản ứng trùng hợp. Đn: Là quá trình cộng hợp liên tiếp nhiều phân tử nhỏ (monome) tạo thành chất có khối lượng phân tử rất lớn (polime) Với n là hệ số trùng hợp hay hệ số polime hóa n CH2=CH2 (- CH2 – CH2 -)n ( Mpolime = 28n n R1 – CH =CH – R2 ( Viết phương trình chỉ quan tâm nguyên tử C mang liên kết đôi n H=H (-H2 -H -)n R1 R2 R1 R2 3- Phản ứng oxi hoá:* Phản ứng với dung dịch KMnO4 loãng tạo thành điol: Làm mất màu dung dịch KMnO4

Phản ứng làn đứt liên kết đôi: * Phản ứng với dung dịch KMnO4 nóng: Sản phẩm phụ thuộc vào anken (mức độ thế anken) mà tạo thành axit, xeton hay CO2

Phản ứng tạo thành anken oxit ( phản ứng epoxyl hoá). * Oxi không khí, xúc tác Ag, thời gian tiếp xúc 1 – 4 giây.

* Phản ứng cháy : CnH2n + 1,5n O2 ( n CO2 + n H2O ta có: = . III. Điều chế. 1. Tách HX từ dẫn xuất halozen CnH2n+1X CnH2n + HX Phản ứng tách này xảy ra theo quy tắc tách Zaixep.

2. Tách phân tử halogen từ dẫn xuất gemđihalogen ankan. R1 – CHX – CHX – R2 + Zn ( R1 – CH=CH – R2 + ZnCl2 3. Đề hiđrat hoá ancol.CnH2n+1OH CnH2n + H2O Chú ý: CH3OH không có phản ứng này (Khi tách H2O của hỗn hợp 2 ancol chỉ thu được 1 qnken) Tuân theo quy tắc tách HX ( Khi tách HX chỉ thu được 1 anken thì vị trí của X ?) 4. Hi®ro ho¸ ankin. CnH2n-2 + H2 CnH2n

II. PHƯƠNG PHÁP GIẢI BÀI TẬP: 1. Phản ứng đốt cháy: CnH2n + 1,5 n O2 ( n CO2 + n H2O * = và mX = mC + mH ; Khi lập công thức cần thông qua mX hoặc Ví dụ 1: Đốt cháy hoàn toàn agam hỗn hợp eten,propen,but-1-en thu được 52,8g CO2 và 21,6g nước. Giá trị của a là:

A. 18,8g B. 18,6g C. 16,8g* D. 16,4gVí dụ 2: Đốt cháy hoàn toàn agam hỗn hợp eten,propen,but-2-en cần dùng vừa đủ b lít oxi ở đktc thu được 53.76 lit CO2 và 43,2g nước. Giá trị của b là:

A. 92,4 B. 94,2 C. 80,64 * D. 24,9 Hướng dẫn : Bảo toàn cho O ta có: = = 115,2 ( = 3,6 ( V = 80,64Ví dụ 3:Trôn 400 Cm3 hỗn hợp gồm hiđrocacbon X và N2 với 900Cm3 oxi (dư) ,đốt cháy hoàn toàn hỗn hợp thu được 1300Cm3 hỗn hợp khí và hơi.Nếu dẫn hỗn hợp qua CaCl2 còn lại 900Cm3 ,cho qua dung dịch Ca(OH)2 dư còn lại 500 Cm3.Công thức phân tử của X là : A. C2H2 B. C3H6 C. C2H6 D. C2H4Hướng dẫn : = 1300 – 900 = 400 và = 900 – 500 = 400 ( = ( X là anken phản ứng = 400 + 200 = 600 ( Dư 300 ( = 500 – 300 = 200 ( VX = 400 – 200 = 200 ( n = 2Ví dụ 4. Đem đốt cháy hoàn toàn 0,1 mol hỗn hợp X gồm 2 anken là đồng đẳng kế tiếp nhau thu được CO2 và nước có khối lượng hơn kém nhau 6,76 gam. Vậy 2 công thức phân tử của 2 anken đó là: A. C2H4 và C3H6 * B. C3H6 và C4H8 C. C4H8 và C5H10 D. C5H10 và C6H12.Hướng dẫn : = ( 44x – 18x = 6,76 ( x = 0,26 ( = 2,6 ( C2H4 và C3H6Ví dụ 5. Đốt cháy hoàn toàn hỗn hợp gồm 1 ankan và 1 anken. Cho sản phẩm cháy lần lượt đi qua bình 1 đựng P2O5 dư và bình 2 đựng KOH rắn, dư thấy bình I tăng 4,14g, bình II tăng 6,16g. Số mol ankan có trong hỗn hợp là:A. 0,06 B. 0,09 C. 0,03 D. 0,045Hướng dẫn : Với anken = ( (n là do ankan gây ra = 0,23 và = 0,14 ( a = 0,09Ví dụ 6: Hỗn hợp A gồm 1 ankan và 1 anken. Số nguyên tử H trong ankan bằng số nguyên tử C trong anken. Đốt cháy 3 g hỗn hợp A thu được 5,4g H2O. CTPT và % khối lượng các chất trong A là:A. CH4: 46,67%; C4H8 : 53,33% B. CH4: 53,33%; C4H8: 46,67%*C. C2H6: 33,33%; C6H12: 66,67% D. C2H6: 66,67%; C6H12: 33,33%Hướng dẫn : = 0,3 với mA = 3 = 12. + 2. ( = = 0,2 ( nAnkan = 0,3 – 0,2 = 0,1 với mAnkan < 3 ( MAnkan < 30 chọn 16 là CH4 ( Anken C4H8 ( %CH4 = 0,1.16/3 = 0,533Ví dụ 7: Chia hỗn hợp 3 anken: C2H4, C3H6, C4H8 thành 2 phần bằng nhau: – Đốt cháy phần 1 sinh ra 5,4g H2O– Phần 2 cho tác dụng với hiđro (có Ni xúc tác), đốt cháy sản phẩm sau phản ứng rồi dẫn sản phẩm cháy vào bình đựng nước vôi trong dư thì khối lượng kết tủa thu đựơc là:A. 29g B. 30g C. 31g D. 32gHướng dẫn : Với anken = = 0,3 ( Khi đốt thành phần CO2 không đổi ( m↓= 30g 2. Phản ứng với dung dịch Br2: CnH2n + Br2 → CnH2nBr2 Tỷ lệ : nAnken : = 1: 1 Khối lượng tăng của bình bằng khối lượng của anken hoặc hỗn hợp anken Ví dụ 1. Cho hỗn hợp 2 anken liên tiếp trong dãy đồng đẳng đi qua dung dịch Br2, thấy có 80g Br2 phản ứng và khối lượng bình Br2 tăng 19,6g. A. Hai anken đó là:A. C3H6; C4H8 B. C4H8, C5H10 C. C2H4; C3H6 * D. C5H10, C6H12 B. %thể tích của mỗi anken trong hỗn hợp là:A. 20%, 80%* B. 25%, 75% C. 40%, 60% D. 50%, 50%Hướng dẫn : manken = 19,6 g ( = 0,5 = nAnken ( 14 = 19,6 : 0,5 ( = 2,8 ( C2H4 và C3H6 Gọi số mol: x + y = 0,5 và 2x + 3y = 2,8.05 ( x = 0,1 ( %C2H4 = 20% Ví dụ 2: Cho 5,1g hỗn hợp X gồm CH4 và 2 anken đồng đẳng liên tiếp qua dung dịch brom dư thấy khối lượng bình tăng 3,5g, đồng thời thể tích hỗn hợp X giảm một nửA. Hai anken có công thức phân tử là: A. C3H6 và C4H8 B. C2H4 và C3H6 C. C4H8 và C5H10 D. C5H10 và C6H12Hướng dẫn : V giảm ½ ( nAnken = nAnkan = = 0,1 ( Anken = 35 ( = 2,5 ( C2H4 và C3H6 Ví dụ 3: Hỗn hợp A gồm 2 anken đồng đẳng liên tiếp. Đốt cháy hoàn toàn V lít A thu được 13,44 lít CO2 ở đkC. Mặt khác A làm mất màu vừa hết 40g nước Br2. A. CTPT của 2 anken là:A. C2H4, C3H6 * B. C2H4, C4H8 C. C3H6, C4H8 D. C4H8, C5H10 B. Xác định % thể tích mỗi anken tương ứng là. A. 60% và 40%* B. 50% và 50% C. 40% và 60% D. 65% và 35%Hướng dẫn : nAnken = = 0,25 với = 0,25= 0,6 ( = 2,4 ( C2H4, C3H6 Gọi số mol: x + y = 0,25 và 2x + 3y = 2,4.0025 ( x = 0,15 ( %C2H4 = 60%Ví dụ 4: Hỗn hợp khí X gồm 1 ankan và 1 anken. Cho 1,68 lit khí X cho qua dung dịch brom làm mất màu vừa đủ dung dịch chứa brom thấy còn lại 1,12 lit khí. Mặt khác nếu đốt cháy hoàn toàn 1,68 lit khí X rồi cho sản phẩm cháy đi qua bình đựng dung dịch nước vôi trong dư thu được 12,5g kết tủA. Công thức phân tử của các hiđrocacbon lần lượt là:A. CH4, C2H4 B. CH4, C3H6 * C. CH4, C4H8 D. C2H6, C3H6Hướng dẫn : Theo bài ra ta có nhổn hợp = 0,075 mol ( nankan = 0,05 mol ( nanken = 0,025 mol = 0,125 = ( = = 1,67 ( Ankan là CH4 ( n = = 3 Ví dụ 5. Cho 10g hỗn hợp khí X gồm etilen và etan qua dung dịch Br2 25% có 160g dd Br2 phản ứng. % khối lượng của etilen trong hỗn hợp là:A. 70% * B. 30% C. 35,5% D. 64,5%Hướng dẫn : = 0,25 = ( %C2H4 = = 0,7 = 70% Ví dụ 6: Một hỗn hợp gồm một ankan X và một anken Y có cùng số nguyên tử cacbon trong phân tử và số mol. m gam . Hỗn hợp này làm mất màu vừa đủ 80g dung dịch brom 20%. Đốt cháy hoàn toàn m gam hỗn hợp trên thu được 0,6 mol CO2. X và Y có công thức phân tử là:A. C2H4, C2H6 B. C3H6, C3H8 C. C5H10, C5H12 D. C4H8, C4H10 Hướng dẫn : = 0,1 = ( nhổn hợp = 0,2 mol ( số C = = 3 3. Phản ứng cộng H2: CnH2n + H2 ( CnH2n + 2 ( nanken = nankan ( Vì m không đổi ( (n = số mol anken (H2) tham giaVí dụ 1: Hỗn hợp khí X gồm H2 và một anken có khả năng cộng HBr cho sản phẩm hữu cơ duy nhất. Tỉ khốicủa X so với H2 bằng 9,1. Đun nóng X có xúc tác Ni, sau khi phản ứng xảy ra hoàn toàn, thu được hỗn hợp khí Y không làm mất màu nước brom; tỉ khối của Y so với H2 bằng 13. Công thức cấu tạo của anken là A. CH2=CH2. B. CH2=CH-CH2-CH3. C. CH3-CH=CH-CH3. D. CH2=C(CH3)2.Hướng dẫn : = 26 ( Dư H2 ( Dùng công thức ( Chọn n1 = 1 ( n = 0,7 ( (n = 0,3 = nanken = nankan ( = 0,7 dư

Chuyen De Giai Bai Toan Bang Cach Lap Phuong Trinh Lop 8

Published on

1. Phương pháp dạy: Giải bài toán bằng cách lập phương trình I. Loại toán tìm hai số. + Hướng dẫn học sinh trong dạng bài này gồm các bài toán như: – Tìm hai số biết tổng hoặc hiệu, hoặc tỉ số của chúng. – Toán về tìm số sách trong mỗi giá sách, tính tuổi cha và con, tìm số công nhân mỗi phân xưởng. – Toán tìm số dòng một trang sách, tìm số dãy ghế và số người trong một dãy. + Hướng dẫn học sinh lập bảng như sau: 1.Toán tìm hai số biết tổng hoặc hiệu hoặc tỉ số. *Bài toán 1: Hiệu hai số là 12. Nếu chia số bé cho 7 và lớn cho 5 thì thương thứ nhất lớn hơn thương thứ hai là 4 đơn vị. Tìm hai số đó. Phân tích bài toán: Có hai đại lượng tham gia vào bài toán, đó là số bé và số lớn. Nếu gọi số bé là x thì số lớn biểu diễn bởi biểu thức nào? Yêu cầu học sinh điền vào các ô trống còn lại ta có thương thứ nhất là 7 x , thương thứ hai là 12 5 x + Giá trị Thương Số bé x 7 x Số lớn x + 12 12 5 x + Lời giải: Gọi số bé là x. Số lớn là: x +12. Chia số bé cho 7 ta được thương là : 7 x . Chia số lớn cho 5 ta được thương là: 12 5 x + Vì thương thứ nhất lớn hơn thương thứ hai 4 đơn vị nên ta có phương trình: 12 5 x + – 7 x = 4 Giải phương trình ta được x = 28 Vậy số bé là 28. Số lớn là: 28 +12 = 40. 2. Toán về tìm số sách trong mỗi giá sách, tìm tuổi, tìm số công nhân của phân xưởng. 1

2. Phương pháp dạy: Giải bài toán bằng cách lập phương trình *Bài toán 2 Hai thư viện có cả thảy 15000 cuốn sách. Nếu chuyển từ thư viện thứ nhất sang thứ viện thứ hai 3000 cuốn, thì số sách của hai thư viện bằng nhau. Tính số sách lúc đầu ở mỗi thư viện. Phân tích bài toán: Có hai đối tượng tham gia vào bài toán: Thư viện 1 và thư viện 2. Nếu gọi số sách lúc đầu của thư viện 1 là x, thì có thể biểu thị số sách của thư viện hai bởi biểu thức nào? Số sách sau khi chuyển ở thư viện 1, thư viện 2 biểu thị như thế nào? Số sách lúc đầu Số sách sau khi chuyển Thư viện 1 x x – 3000 Thư viện 2 15000 – x (15000 – x) + 3000 Lời giải: Gọi số sách lúc đầu ở thư viện I là x (cuốn), x nguyên, dương. Số sách lúc đầu ở thư viện II là: 15000 – x (cuốn) Sau khi chuyển số sách ở thư viện I là: x – 3000 (cuốn) Sau khi chuyển số sách ở thư viện II là: (15000 – x)+ 3000 = 18000-x (cuốn) Vì sau khi chuyển số sách 2 thư viện bằng nhau nên ta có phương trình: x – 3000 = 18000 – x Giải phương trình ta được: x = 10500 (thỏa mãn điều kiện). Vậy số sách lúc đầu ở thư viện I là 10500 cuốn. Số sách lúc đầu ở thư viện II là: 15000 – 10500 = 4500 cuốn. *Bài toán 3: Số công nhân của hai xí nghiệp trước kia tỉ lệ với 3 và 4. Nay xí nghiệp 1 thêm 40 công nhân, xí nghiệp 2 thêm 80 công nhân. Do đó số công nhân hiện nay của hai xí nghiệp tỉ lệ với 8 và 11. Tính số công nhân của mỗi xí nghiệp hiện nay. Phân tích bài toán: Có hai đối tượng tham gia trong bài toán, đó là xí nghiệp 1 và xí nghiệp 2. Nếu gọi số công nhân của xí nghiệp 1 là x, thì số công nhân của xí nghiệp 2 biểu diễn bằng biểu thức nào? Học sinh điền vào các ô trống còn lại và căn cứ vào giả thiết: Số công nhân của hai xí nghiệp tỉ lệ với 8 và 11 để lập phương trình. Số công nhân Trước kia Sau khi thêm Xí nghiệp 1 x x + 40 Xí nghiệp 2 4 3 x 4 3 x + 80 2

4. Phương pháp dạy: Giải bài toán bằng cách lập phương trình Theo bài ra ta có phương trình phương trình như sau: 2 10 10 2 2 3 x x+ − = + + Giải phương trình ta được: x = 46 (thỏa mãn điều kiện). Vậy số tuổi hiện nay của ngườ thứ nhất là: 46 tuổi. Số tuổi hiện nay của ngườ thứ hai là: 46 2 2 12 2 + − = tuổi. 3. Dạng toán tìm số dãy ghế và số người trong một dãy. *Bài toán 5: Một phòng họp có 100 chỗ ngồi, nhưng số người đến họp là 144. Do đó, người ta phải kê thêm 2 dãy ghế và mỗi dãy ghế phải thêm 2 người ngồi. Hỏi phòng họp lúc đầu có mấy dãy ghế? Phân tích bài toán: Bài toán có hai tình huống xảy ra: Số ghế ban đầu và số ghế sau khi thêm. Nếu chọn số ghế lúc đầu là x, ta có thể biểu thị các số liệu chưa biết qua ẩn và có thể điền được vào các ô trống còn lại. Dựa vào giả thiết: Mỗi dãy ghế phải kê thêm 2 người ngồi, ta có thể lập được phương trình: Số dãy ghế Số ghế của mỗi dãy Lúc đầu x 100 x Sau khi thêm x + 2 144 2x + Lời giải: Gọi số dãy ghế lúc đầu là x ( dãy), x nguyên dương. Số dãy ghế sau khi thêm là: x + 2 (dãy). Số ghế của một dãy lúc đầu là: 100 x (ghế). Số ghế của một dãy sau khi thêm là: 144 2x + (ghế). Vì mỗi dãy ghế phải thêm 2 người ngồi nên ta có phương trình: 144 100 2 2x x − = + Giải phương trình ta được x=10 (thỏa mãn đk) Vậy phòng họp lúc đầu có 10 dãy ghế. II. Loại toán chuyển động: Loại toán này có rất nhiều dạng, tuy nhiên có thể phân ra một số dạng thường gặp như sau: 1, Toán có nhiều phương tiện tham gia trên nhiều tuyến đường. 4

6. Phương pháp dạy: Giải bài toán bằng cách lập phương trình Vận tốc ô tô là 18 + 17 = 35(km/h). * Bài toán 7: Một người đi xe đạp từ A đến B cách nhau 33km với vận tốc xác định. Khi đi từ B đến A, người đó đi bằng con đường khác dài hơn trước 29km, nhưng với vận tốc lớn hơn vận tốc lúc đi là 3km/h. Tính vận tốc lúc đi, biết thời gian đi nhiều hơn thời gian về là 1h30′? S(km) v(km/h) t(h) Lúc đi 33 x x 33 Lúc về 33+29 x+3 3 62 +x Hướng dẫn tương tự bài 6. – Công thức lập phương trình: tvề – tđi =1h30′ (= h 2 3 ). – Phương trình là: 2 333 3 62 =− + xx 6

10. Phương pháp dạy: Giải bài toán bằng cách lập phương trình Thời gian đi của xe 1 là x 3 2 + h Quãng đường xe 2 đi là: 35x km Quãng đường xe 1 đi là: 30(x 3 2 + ) km Vì 2 bến cách nhau 175 km nên ta có phương trình: 30(x 3 2 + ) + 35x = 175 Giải phương trình ta được x = 2 (tmđk) Vậy sau 2 giờ xe 2 gặp xe 1. 5. Chuyển động cùng chiều: Học sinh cần nhớ: + Quãng đường mà hai chuyển động đi để gặp nhau thì bằng nhau. + Cùng khởi hành: tc/đ chậm – tc/đ nhanh = tnghỉ (tđến sớm) + Xuất phát trước sau: tc/đ trước – tc/đ sau = tđi sau tc/đ sau + tđi sau + tđến sớm = tc/đ trước * Bài toán 12: Một chiếc thuyền khởi hành từ bến sông A, sau đó 5h20′ một chiếc ca nô cũng chạy từ bến sông A đuổi theo và gặp thuyền tại một điểm cách A 20km. Hỏi vận tốc của thuyền? biết rằng ca nô chạy nhanh hơn thuyền 12km/h. Phân tích bài toán: Chuyển động của thuyền và ca nô nhưng không có vận tốc dòng nước vì thế các em làm như chuyển động trên cạn. Công thức lập phương trình: tthuyền – tca nô = tđi sau S(km) v(km/h) t(h) Thuyền 20 x 20 x Ca nô 20 x+12 20 12x + Lời giải: Gọi vận tốc của thuyền là x km/h Vận tốc của ca nô là x = 12 km/h Thời gian thuyền đi là: 20 x 10

13. Phương pháp dạy: Giải bài toán bằng cách lập phương trình – Công thức lập phương trình: tdự định = tđi + tnghỉ + tđến sớm . – Phương trình là: 1 5 12 36 52 3 3 x x x = + + + Đáp số: 1 55 17 Km. * Bài toán 15: Một người dự định đi từ tỉnh A đến tỉnh B với vận tốc 50km/h. Sau khi đi được 1 3 quãng đường với vận tốc đó, vì đường khó đi nên người lái xe phải giảm vận tốc mỗi giờ 10km trên quãng đường còn lại. Do đó ô tô đến tỉnh B chậm 30 phút so với dự định. Tính quãng đường AB? S(km) v(km/h) t(h) SAB x 50 50 x tdự định 2 3 SAB 2 3 x 50 75 x tthực tế 1 3 SAB 3 x 40 120 x Muộn 30’= 1 2 h tmuộn Bài toán này hướng dẫn học sinh tương tự như bài 21, chỉ khác là chuyển động đến muộn so với dự định. Giáo viên cần lấy ví dụ thực tế để các em thấy: tdự định = tthực tế – tđến muộn Phương trình là: 1 50 75 120 2 x x x = + − Đáp số: 300 Km. *Bài toán 16: Một người đi xe đạp với vận tốc 15km/h. Sau đó một thời gian, một người đi xe máy cũng xuất phát từ A với vận tốc 30km/h. Nếu không có gì thay đổi thì sẽ đuổi kịp người đi xe đạp ở B.Nhưng sau khi đi được 1 2 quãng đường AB, người đi xe đạp giảm bớt vận tốc 3km/h. Nên hai người gặp nhau tại điểm C cách B 10 km. Tính quãng đường AB? Phân tích bài toán: 13

14. Phương pháp dạy: Giải bài toán bằng cách lập phương trình Bài tập này thuộc dạng chuyển động, 1 2 quãng đường của hai chuyển động cùng chiều gặp nhau. Đây là dạng bài khó cần kẻ thêm nhiều đoạn thẳng để học sinh dễ hiểu hơn. Sau khi đã chọn quãng đường AB là x(km), chú ý học sinh: + Xe máy có thời gian đi sau và thời gian thực đi. + Xe đạp thay đổi vận tốc trên hai nửa quãng đường nên có hai giá trị về thời gian. + Thời gian xe đạp đi sớm hơn thời gian xe máy. Từ đó hướng dẫn học sinh lập phương trình: txe đạp – txe máy = tđi sau S(km) v (km/h) t(h) SAB x Xe máy: 30 Xe máy: 30 x Xe đạp: 15 Xe đạp: 15 x Xe máy 15 30 30 x x x − = x – 10 30 10 30 x − Xe đạp 2 x 15 30 x 10 2 x − 12 20 24 x − 14