Top 9 # Xem Nhiều Nhất Giải Phương Trình Dạng Mới Nhất 2/2023 # Top Like | Asianhubjobs.com

Các Dạng Phương Trình Quy Về Phương Trình Bậc Hai

Chuyên đề: Phương trình – Hệ phương trình

Các dạng phương trình quy về phương trình bậc hai

Lý thuyết & Phương pháp giải

Phương trình trùng phương: ax 4 + bx 2 + c = 0, (a ≠ 0) (*)

– Đặt t = x 2 ≥ 0 thì (*) ⇔ at 2 + bt + c = 0 (**)

– Để xác định số nghiệm của (*), ta dựa vào số nghiệm của (**) và dấu của chúng, cụ thể:

+ Để (*) vô nghiệm ⇔

+ Để (*) có 1 nghiệm

+ Để (*) có 2 nghiệm phân biệt ⇔

+ Để (*) có 3 nghiệm ⇔ (**) có 1 nghiệm bằng 0 và nghiệm còn lại dương.

+ Để (*) có 4 nghiệm ⇔ (**) có 2 nghiệm dương phân biệt.

Một số dạng phương trình bậc bốn quy về bậc hai

Phương pháp giải: Chia hai vế cho x 2 ≠ 0, rồi đặt t = x + α/x ⇒ t 2 = (x + α/x) 2 với α = d/b

Loại 2. (x+a)(x+b)(x+c)(x+d) = e với a + c = b + d

Phương pháp giải: [(x+a)(x+c)]⋅[(x+b)(x+d)] = e

Loại 3. (x+a)(x+b)(x+c)(x+d) = ex 2 với a.b = c.d

Phương pháp giải: Đặt t = x 2 + ab + ((a+b+c+d)/2)x thì phương trình

⇔ (t + ((a+b-c-d)/2)x)(t – ((a+b-c-d)/2)x) = ex 2 (có dạng đẳng cấp)

Phương pháp giải: Đặt x = t-(a+b)/2 ⇒ (t + α) 4 + (t – α) 4 = c với α = (a-b)/2

Phương pháp giải: Tạo ra dạng A 2 = B 2 bằng cách thêm hai vế cho một lượng 2k.x 2 + k 2, tức phương trình (1) tương đương:

Cần vế phải có dạng bình phương

Phương pháp giải: Tạo A 2 = B 2 bằng cách thêm ở vế phải 1 biểu thức để tạo ra dạng bình phương: (x 2 + (a/2)x + k) 2 = x 4 + ax 3 + (2k + a 2/4)x 2 + kax + k 2. Do đó ta sẽ cộng thêm hai vế của phương trình (2) một lượng: (2k + a 2/4)x 2 + kax + k 2, thì phương trình

Lúc này cần số k thỏa:

Lưu ý: Với sự hổ trợ của casio, ta hoàn toàn có thể giải được phương trình bậc bốn bằng phương pháp tách nhân tử. Tức sử dụng chức năng table của casio để tìm nhân tử bậc hai, sau đó lấy bậc bốn chia cho nhân tử bậc hai, thu được bậc hai. Khi đó bậc bốn được viết lại thành tích của 2 bậc hai

Phân tích phương trình bậc ba bằng Sơ đồ Hoocner

Khi gặp bài toán chứa tham số trong phương trình bậc ba, ta thường dùng nguyên tắc nhẩm nghiệm sau đó chia Hoocner.

Nguyên tắc nhẩm nghiệm:

+ Nếu tổng các hệ số bằng 0 thì phương trình sẽ có 1 nghiệm x = 1

+ Nếu tổng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ thì PT có 1 nghiệm x = -1

+ Nếu phương trình chứa tham số, ta sẽ chọn nghiệm x sao cho triệt tiêu đi tham số m và thử lại tính đúng sai

Chia Hoocner: đầu rơi – nhân tới – cộng chéo

Ví dụ minh họa

Hướng dẫn:

Ta thấy x = 0 không phải là nghiệm của phương trình nên chia hai vế phương trình cho x 2 ta được: 2(x 2 + 1/x 2) – 5(x + 1/x) + 6 = 0

Ta có phương trình: 2(t 2 – 2) – 5t + 6 = 0 ⇔ 2t 2 – 5t + 2 = 0 ⇔

+ t = 1/2 ⇒ x + 1/x = 1/2 ⇔ 2x 2 – x + 2 = 0 (vô nghiệm)

+ t = 2 ⇒ x + 1/x = 2 ⇔ x 2 – 2x + 1 = 0 ⇔ x = 1

Vậy phương trình có nghiệm duy nhất x = 1

Bài 2: Giải phương trình x(x+1)(x+2)(x+3) = 24

Hướng dẫn:

Phương rình tương đương với (x 2 + 3x)(x 2 + 3x + 2) = 24

Đặt t = x 2 + 3x, phương trình trở thành

t(t+2) = 24 ⇔ t 2 + 2t – 24 = 0 ⇔

+ t = -6 ⇒ x 2 + 3x = -6 ⇔ x 2 + 3x + 6 = 0 (Phương trình vô nghiệm)

+ t = 4 ⇒ x 2 + 3x = 4 ⇔ x 2 + 3x – 4 = 0 ⇔

Vậy phương rình có nghiệm là x = -4 và x = 1

Bài 3: Giải phương trình 4(x+5)(x+6)(x+10)(x+12) = 3x 2

Hướng dẫn:

Phương trình tương đương với 4(x 2 + 17x + 60)(x 2 + 16x + 60) = 3x 2 (*)

Ta thấy x = 0 không phải là nghiệm của phương trình.

Xét x ≠ 0, chia hai vế cho x 2 ta có

(*)⇔ 4(x + 17 + 60/x)(x + 16 + 60/x) = 3

Đặt y = x + 16 + 60/x phương trình trở thành

4(y+1)y = 3 ⇔ 4y 2 + 4y – 3 = 0 ⇔

Với y = 1/2 ta có x + 16 + 60/x = 1/2 ⇔ 2x 2 + 31x + 120 = 0

Với y = -3/2 ta có x + 16 + 60/x = -3/2 ⇔ 2x 2 + 35x + 120 = 0

Vậy phương trình có nghiệm là x = -8, x = -15/2 và

Hướng dẫn:

Suy ra x = -2

Vậy phương trình có nghiệm duy nhất x = -2

Bài 5: Giải phương trình

Hướng dẫn:

Điều kiện: x ≠ 2; x ≠ 3

Đặt u = (x+1)/(x-2); v = (x-2)/(x-3) ta được u 2 + uv = 12v 2

⇔(u – 3v)(u + 4v) = 0 ⇔ u = 3v; u = -4v

+) u = 3v ⇔ (x+1)/(x-2) = 3(x-2)/(x-3) ⇔ x 2 + 4x + 3 = 3x 2 – 12x + 12

⇔2x 2 – 16x + 9 = 0 ⇔ x = (8 ± √46)/2

+) u = -4v ⇔ (x+1)/(x-2) = -4(x-2)/(x-3) ⇔ x 2 + 4x + 3 = -4x 2 + 16x – 16

⇔ 5x 2 – 12x + 19 = 0(Vô nghiệm)

Vậy phương trình đã cho có hai nghiệm là x = (8 ± √46)/2

Chuyên đề Toán 10: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k5: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

phuong-trinh-he-phuong-trinh.jsp

Phương Pháp Giải Các Dạng Bài Toán Phương Trình Mặt Phẳng

1 PP GIẢI CÁC DẠNG BT PHƯƠNG TRÌNH MẶT PHẲNG Để viết pt măt phẳng em có 2 cách cơ bản : . Xác định 1 điểm và 1 VTPT . Hoặc gọi ptmp dạng Ax+By+Cz+D=0 rồi dựa vào giả thiết tìm A,B,C,D. Vậy khi nào sử dụng cách 1 , khi nào sử dụng cách 2 thì em phân biệt các dạng đề bài sau: Dạng 1: Viết PT mp đi qua A(x0; y0 ;z0) và có VTPT n  =(A;B;C) A(x-x0) + B(y-y0) + C(z-z0) = 0  Ax + By + Cz + D = 0 Dạng 2: Viết pt mặt phẳng đi qua A(x0; y0 ;z0) và – Từ ptmp(Q) VTPT n Q = (A;B;C) – Vì (P) – PT mp (P) đi qua A và có VTPT n  P Dạng 3: Viết pt mp đi qua A(x0; y0 ;z0) và vuông góc với đường thẳng d – Từ (d) VTCP u d = (A;B;C) – Vì (P) vuông góc với (d) Chọn VTPT n P=u d =(A;B;C) Viết ptmp (P) đi qua A và có vtpt n P. Dạng 4: Viết ptmp đi qua A và  (Q) ,  (R) – Từ pt mp (Q) và (R) VTPT n Q ; VTPT n R – Vì (P)  (Q) và  (R) VTPT n P  Qn và n P  n R Chọn n P = [ n Q; n R] – Vậy pt mp (P) đi qua A và có VTPT n  P = [ n  Q; n  R] Dạng 5: Viết Pt mp (P) đi qua 3 điểm A,B,C không thẳng hàng – Tính AB  , AC  và a  = [ AB  , AC  ] – PT mp (P) đi qua A và có VTPT n  P= a  = [ AB  , AC  ] Dạng 6: Viết ptmp (P) đi qua A,B và  (Q) – Tính AB  , vtpt n  Q và tính [ AB  , n  Q] – Vì A, B (P) ; (Q)  (P) nên chọn n P=[ AB , n Q] – Viết ptmp (P) Dạng 7: Viết ptmp (P) đi qua A ;  (Q) và – Tính VTPT n  Q của mp (Q); VTCP u  d của đường thẳng (d). – Tính [u  d, n  Q] – Vì (P)  (Q) và  d, n  Q] – Từ đó viết được PT mp (p) Dạng 8: Viết ptmp (P) là trung trực của AB. – Tình trung điểm I của ABvà AB  – Mp (P) đi qua I và nhận AB  làm VTPT. Dạng 9: Viết pt mp(P) chứa (d) và đi qua A – Tính VTCP u  d của đường thẳng (d) và tìm điểm M(d) – Tính AM  và [u  d, AM  ] – Ptmp (P) đi qua A và có VTPT n  P =[u  d, AM  ]. Dạng 10: Viết pt mp (P) chứa (d) và – Từ (d)  VTCP u d và điểm M (d) – Từ ( ) VTCP u và tính [u d, u  ] – PT mp (P) đi qua M và có VTPT n  = [u  d, u   ]. Dạng 11: Viết Pt mp(P) chứa (d) và  (Q) – Từ (d) VTCP u d và điểm M (d) – Từ (Q) VTPT n Q và tính [u d, n Q] Chuyên đề LTĐH – Giải tích trong không gian Biên soạn: Lê Minh Đạt – 0918 344 200 2 – PT mp (P) đi qua M và có VTPT n  =[u  d, n  Q]. Dạng 12: Viết PT mp (P) – Vì (P) ( theo pt của mp (Q) , trong đó D DQ) – Vì d(A,(P))= h nên thay vào ta tìm được D – Thay A,B,C,D ta có PT mp (P) cần tìm. Dạng 13: Viết PT mp(P) chứa (d) và d(A,(P))=h – Gọi VTPT của mp (P) là n  – Từ (d)  VTCP u d và điểm M (d) – Vì (d) nằm trong (P)  u d. n P=0 (1) – PT mp (p) đi qua M: A(x-x0) + B(y-y0) + C(z-z0) = 0 – d(A,(P)) = h (2) – Giải (1);(2) ta tìm được A,B theo C từ đó chọn A,B,C đúng tỉ lệ , ta viết được PT mp(P). Dạng 14: Viết Pt mp(P) chứa (d) và hợp với mp (Q) một góc   900 – Gọi VTPT của mp (P) là n  – Từ (d)  VTCP u d và điểm M  (d) – Vì d  (P)  u d. n P=0 (1) – Tính cos ((P),(Q)) (2) – Từ (1) và (2) ta tìm được A,B theo C từ đó chọn A,B,C đúng tỉ lệ , ta viết được PT mp(P). Dạng 15: Viết Pt mp (P) chứa (d) và hợp với đt( )một góc   900 – Gọi VTPT của mp (P) là n  – Từ (d)  VTCP u d và điểm M  (d) – Vì d  (P)  u d. n P=0 (1) – Tính sin ((P),(  )) (2) – Hệ (1) và (2) tìm được A,B theo C từ đó chọn A,B,C đúng tỉ lệ , ta viết được PT mp(P). Dạng 16: Cho A và (d) , viết PT mp (P) chứa (d) sao cho d(A,(P)) là lớn nhất – Gọi H là hình chiếu  của A lên (d) – Ta có : d(A,(P)) = AK AH (tính chất đường vuông góc và đường xiên) Do đó d(A(P)) max  AK = AH  KH – Viết PT mp (P) đi qua H và nhận AH làm VTPT Dạng 17: Viết Pt mp (P) – Xác định tâm I, bán kính R của mặt cầu (S) – Vì (P) (theo pt của mp (Q) , trong đó D’ DQ). – Mà (P) tiếp xúc với (S) nên d(I,(P))= R tìm được D’ – Từ đó ta có Pt (P) cần tìm Dạng 18: Viết PT mp(P) là đường tròn(C) có bán kính r ( hoặc diện tích, chu vi cho trước). – Xác định tâm I, bán kính R của mặt cầu (S) – Adct : Chu vi đường tròn C = 2 r và diện tích S = 2r tính r. – d(I,(P)) = 2 2R r (1) – Vì (P) (theo pt của mp (Q) , trong đó D’ DQ) – Suy ra d (I,(P)) (2) Giải hệ (1), (2) tìm được D’  viết được pt (P). Dạng 19: Viết PT mp(P) chứa (d) và tiếp xúc với mặt cầu (S) – Xác định tâm I, bán kính R của mặt cầu (S) – Gọi VTPT của mp (P) là n  Chuyên đề LTĐH – Giải tích trong không gian Biên soạn: Lê Minh Đạt – 0918 344 200 3 – Từ (d)  VTCP u d và điểm M (d) – d  (P)  u d. n P=0 (1) – Mà (P) tiếp xúc với (S) nên d(A,(P))= R (2) – Giải hệ (1) và (2) tìm được A,B theo C PT mp(P). Dạng 20: Viết Pt mp (P) chứa (d) và cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có bán kính r ( hoặc diện tích , chu vi cho trước) – Xác định tâm I, bán kính R của mặt cầu (S) – Adct : Chu vi đường tròn C = 2 r và diện tích S = 2r tính r. – Vì d  (P)  u d. n P=0 (1) – Gọi VTPT của mp (P) là n  chọn M trên đường thẳng d. – Vì (P) cắt (S) theo đường tròn bán kính r nên d(I,(P)= r (2) – Giải hệ (1) và (2) tìm được A,B theo C PT mp(P). Dạng 21: Viết PT mp (P) chứa (d) và cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có bán kính nhỏ nhất .(áp dụng trường hợp d cắt (S) tại 2 điểm). – Xác định tâm I, bán kính R của mặt cầu (S) – Bán kính r = 2 2( ,( ))R d I p để r min  d(I,(P)) max – Gọi H là hình chiếu  của I lên (d) ; K là hình chiếu  của I lên (P) – Ta có: d(I,(P))= IK Ih ( tính chất đường vuông góc và đường xiên) – Do đó: d(I,(P)) max AK = AH  KH – PT mp(P) đi qua H và nhận IH  làm VTPT PP GIẢI CÁC DẠNG PHƯƠNG TRÌNH ĐƯỜNG THẲNG Có 2 loại phương trình đường thẳng : PT ThamSố và PT ChínhTắc. Dạng 1: Viết ptđt (d) qua M(x0; y0 ;z0) và có VTCP u  =(a,b,c) PP: phương trình tham số của d là (d): 0 0 0 x x at y y bt z z ct       với t R * Chú ý : Nếu cả a, b, c  0 thì (d) có PT chính tắc 0 0 0x x y y z z a b c     * Chú ý: Đây là bài toán cơ bản. Về nguyên tắc muốn viết PT dt(d) thì cần phải biết 2 yếu tố đó là tọa độ một điểm thuộc d và toạ độ VTCP của d. Dạng 2: Viết pt dt(d) đi qua 2 điểm A,B – Tính AB  – Viết PT đường thăng đi qua A, và nhận AB  làm VTCP Dạng 3: Viết PT dt (d) đi qua A và – Từ pt( ) VTCP u  – Viết Pt dt(d) đi qua A và nhận u   làm VTCP Dạng 4: Viết PT dt(d) đi qua A và  (P) – Tìm VTPT của mp(P) là n  P – Pt dt(d) đi qua A và Có VTCP u  d = n  P Dạng 5: Viết Pt dt(d) đi qua A và vuông góc với cả 2 dt (d1),(d2) – Từ (d1),(d2) 1 2 1 2, à u à uVTCPd d l v    , 2u  ]. – Vì (d)  (d1),(d2) nên có VTCP u  d= [ 1u  , 2u  ] – Pt dt(d) đi qua A và có VTCP u  d= [ 1u  , 2u  ] Dạng 6: Viết PT của dt (d) là giao tuyến của 2 mp (P):Ax + By + Cz + D = 0 Chuyên đề LTĐH – Giải tích trong không gian Biên soạn: Lê Minh Đạt – 0918 344 200 4 (Q):A’x + B’y + C’z + D’ = 0 – Từ (P) và (Q)  n P , n Q – Tính [ n  P , n  Q] – Xét hệ ‘ ‘ ‘ ‘ Ax + By + Cz +D =0 A 0x B y C z D      . Chọn một nghiệm (x0; y0 ;z0) từ đó Md – Pt dt(d) đi qua M và có VTCP u  d =[ n  P , n  Q]. Dạng 7: Viết PT hình chiếu của d lên mp(P) Cách 1: – Viết ptmp(Q) chứa d và vuông góc với mp(P) – Hình chiếu cần tìm d’ = (P) (Q) Cách 2: + Tìm A = ( )d P ( chỉ áp dụng với giả thiết d cắt (P) ) + Lấy M d và xác định hình chiếu H của M lên (P) + Viết phương trình d’ đi qua M, H Dạng 8: Viết pt đg thẳng d đi qua điểm A và cắt 2 đường thẳng d1, d2: Cách 1 *Viết pt mặt phẳng ( ) đi qua điểm A và chứa đường thẳng d1 * Tìm B = 2( ) d  * Đường thẳng cần tìm đi qua A, B Cách 2 : Viết pt mặt phẳng ( ) đi qua điểm A và chứa đường thẳng d1 Viết pt mặt phẳng ( ) đi qua điểm B và chứa đường thẳng d2 Đường thẳng cần tìm d =   Dạng 9: Viết pt đường thẳng d song song d1 và cắt cả d2 , d3 – Viết phương trình mp (P) song song d1 và chứa d2 – Viết phương trình mp (Q) song song d1 và chứa d3 – Đường thẳng cần tìm d = ( ) ( )P Q Dạng 10 : Viết ptđt d đi qua A và vuông góc đường thẳng d1 và cắt d2 Cách 1 : – Viết pt mp ( ) qua A và vuông góc d1 – Tìm giao điểm B = 2( ) d  – Đường thẳng cần tìm đi qua A, B Cách 2 : * Viết pt mp ( ) qua A và vuông góc d1 * Viết pt mp ( ) qua A và chứa d1 * Đường thẳng cần tìm d =   Dạng 11 : Viết ptđt d đi qua A, song song mp ( ) , cắt đường thẳng d’ Cách 1 : – Viết ptmp(P) đi qua A và song song với ( ) – Viết ptmp(Q) đi qua A và chứa d’ – Đường thẳng cần tìm d = ( ) ( )P Q Cách 2 : * Viết ptmp(P) đi qua A và song song với ( ) * Tìm B = ( ) ‘P d * Đường thẳng cần tìm đi qua 2 điểm A,B Dạng 12 : Viết ptđt d nằm trong mp(P) và cắt 2 đường thẳng d1, d2 cho trước. – Tìm giao điểm A=d1 ( )P và B=d2 ( )P – Đường thẳng d đi qua 2 điểm A, B Dạng 13 : Viết ptđt d nằm trong mp(P) và vuông góc với đường thẳng d’ tại giao điểm I của (P) và d’. * Tìm giao điểm I’ = d’ ( )P * Tìm VTCP u  của d’ và VTPT n  của (P) và tính [u,n]v    * Viết ptđt d qua I và có VTCP v  Dạng 14 : Viết ptđt vuông góc chung d của 2 dường thẳng chéo nhau d1, d2 : – Gọi 0 0 0 1( , , )M x at y bt z ct d    , Chuyên đề LTĐH – Giải tích trong không gian Biên soạn: Lê Minh Đạt – 0918 344 200 5 và ‘ ‘ ‘0 0 0 2( ‘ ‘, ‘ ‘, ‘ ‘)N x a t y b t z c t d    là các chân đường vuông góc chung của d1, d2 – Ta có hệ 11 2 2 . 0 , ‘ . 0 MN d MN u t t MN d MN u            . – Thay t, t’ tìm M, N. Viết ptđt đi qua M,N. ( Với cách 2 em tính thêm được khoảng cách MN, cũng chính là độ dài đường vuông góc) Dạng 15 : Viết pt đường thẳng d vuông góc với mp(P) và cắt 2 đường thẳng d1,d2 . * Viết ptmp(Q) chứa d1 và vuông góc với mp(P) * Viết ptmp(R) chứa d2 và vuông góc với mp(P) * Đường thẳng d = ( ) ( )Q R Dạng 16 : Viết ptđt d đi qua điểm A , cắt và vuông góc với đường thẳng d1 . – Viết pt mp ( ) qua A và vuông góc d1 – Tìm giao điểm B = 1( ) d  – Đường thẳng cần tìm đi qua A, B Dạng 17 : Viết ptđt d đi qua A ,vuông góc với d1,tạo với d2 góc 0 0(0 ;90 ) (= 300, 450, 600) * Gọi VTCP của d là 2 2 2( ; ; ), : 0u a b c dk a b c    * Vì 11 . 0d d u u     Vì 2 2 . . u u cos u u     ( chú ý : nếu thay g … MẶT CẦU CẮT MẶT PHẲNG Bài 1: Lập phương trình mặt cầu có tâm tạo giao điểm I của mặt phẳng (P) và đường thẳng (d) sao cho mặt phẳng (Q) cắt khối cầu theo thíêt diện là hình tròn có diện tích 12ẽ ,biết : 1)   R tz ty tx d        t 2 3 1 : ,(P):x-y-z+3=0 2)   01 03 :     y zyx d , (P):x+y-2=0. Chuyên đề LTĐH – Giải tích trong không gian Biên soạn: Lê Minh Đạt – 0918 344 200 34 Bài 2: Lập phương trình mặt cầu có tâm thuộc đường thẳng (d) và cắt mặt phăng (P) theo thiết diện là đường tròn lớn có bán kính bằng 18.biết:   R tz ty tx d        t 1 39 412 : và (P):y+4z+17=0. Bài 3: Trong không gian 0xyz , cho hai điểm A(0,0,-3),B(2,0,-1) ,và mặt phẳng (P):3x-8y+7z-1=0 . 1) (HVNH-2000): Tìm toạ độ điểm C nằm trên mặt phẳng (P) sao cho tam giác đều . 2) Lập phương trình mặt cầu (S) đi qua 3 điểm A,B,C và có tâm thuộc mặt phẳng (P):x-y-z-2=0. MẶT CẦU TIẾP XÚC VỚI ĐƯỜNG THẲNG Bài 1: Viết phương trình mặt cầu (S) biết : 1) Tâm I(1,2,-1) và tiếp xúc với đường thẳng (d) có phương trình :   R z ty tx d        t 1 1 : 2) Tâm I(3,-1,2) và tiếp xúc với đường thẳng (d) có phương trình :   017322 0322 :     zyx zyx d Bài 2: Trong không gian 0xyz, cho hai đường thẳng (d1),(d2) ,biết :   R tz ty tx d        t 32 1 21 :1 ,   012 043 :2     zyx yx d Lập phương trình mặt cầu (S) tiếp xúc với (d1) tại điểm H(3,1,3) và có tâm thuộc đường thẳng (d2). Bài 3: Trong không gian 0xyz, cho hai đường thẳng (d1),(d2) ,biết :   01 012 :1     zyx yx d ,   012 033 :2     yx zyx d 1) CMR hai đường thẳng đó cắt nhau .Xác định tọa độ giao điểm I của chúng . 2) Viết phương trình tổng quát của mặt phẳng (P) đi qua hai đường thẳng (d1) và (d2). 3) Lập phương trình mặt cầu tiếp xúc với (d1),(d2) và có tâm thuộc đường thẳng (d) có phương trình :   R tz ty tx d        t 33 2 21 : Bài 4: Trong không gian 0xyz, cho hai đường thẳng (d1),(d2) ,biết :   R)(t 46 32 23 :1       tz ty tx d ,   015 0194 :2     zx yx d 1) CMR hai đường thẳng đó cắt nhau .Xác định tọa độ giao điểm I của chúng . 2) Viết phương trình tổng quát của mặt phẳng (P) đi qua hai đường thẳng (d1) và (d2). 3) Lập phương trình mặt cầu tiếp xúc với (d1),(d2) và có tâm thuộc đường thẳng (d) có phương trình :   4 9 1 5 3 7 :   zyxd Bài 5: Trong không gian 0xyz, cho hai đường thẳng (d1),(d2) ,biết :   4 1 32 2 :1    zyxd ,   129 2 6 7 :2 zyxd   1) CMR hai đường thẳng đó song song với nhau. 2) Viết phương trình tổng quát của mặt phẳng (P) đi qua hai đường thẳng (d1) và (d2). 3) Lập phương trình mặt cầu tiếp xúc với (d1),(d2) và có tâm thuộc đường thẳng (d) có phương trình : Chuyên đề LTĐH – Giải tích trong không gian Biên soạn: Lê Minh Đạt – 0918 344 200 35   R z ty tx d        t 1 1 : Bài 6: Trong không gian 0xyz, cho hai đường thẳng (d1),(d2) ,biết :   4 9 1 5 3 7 :1   zyxd ,   4 18 1 4 3 :2   zyxd 1) CMR hai đường thẳng đó song song với nhau. 2) Viết phương trình tổng quát của mặt phẳng (P) đi qua hai đường thẳng (d1) và (d2). 3) Lập phương trình mặt cầu tiếp xúc với (d1),(d2) và có tâm thuộc đường thẳng (d) có phương trình :   R tz ty tx d        t 1 3 23 : Bài 7: Trong không gian 0xyz, cho hai đường thẳng (d1),(d2) ,biết :   R)(t 33 2 21 :1       tz ty tx d ,   31 23 2 :2       uz uy ux d 1) CMR hai đường thẳng đó chéo nhau. 2) Viết phương trình đường vuông góc chung của(d1) và (d2). 3) Tính khoảng cách giữa (d1) và (d2). 4) Lập phương trình mặt cầu tiếp xúc với (d1),(d2) và có tâm thuộc mặt phẳng (P) : xy+z-2=0 Bài 8: Trong không gian 0xyz, cho hai đường thẳng (d1),(d2) ,biết :   01 03 :1     zx zyx d ,   01 0922 :2     zy zyx d 1) CMR hai đường thẳng đó chéo nhau. 2) Viết phương trình đường vuông góc chung của(d1) và (d2). 3) Lập phương trình mặt cầu tiếp xúc với (d1),(d2) và có tâm thuộc mặt phẳng (P):2x-y+3z-6=0. MẶT CẦU CẮT ĐƯỜNG THẲNG Bài 1: (ĐHQG-96): Cho điểm I(2,3,-1) và đường thẳng (d) có phương trình :   0843 020345 :     zyx zyx d 1) Xác định VTCP a của (d) suy ra phương trình mặt phẳng (P) qua I và vuông góc với (d): 2) Tính khoảng cách từ I đến (d) từ đó suy ra phương trình mặt cầu (S) có tâm sao cho (S) cắt (d) tại hai điểm phân biệt A,B thoả mãn AB=40. Bài 2: Cho đường thẳng (d) và mặt phẳng (P) có phương trình :   R tz ty tx d        t 3 2 21 : , (P):2x-y-2z+1=0. 1) (ĐHBK-98):Tìm toạ độ các điểm thuộc đường thẳng (d) sao cho khoảng cách từ mỗi điểm đó đến mặt phẳng (P) bằng 1. 2) (ĐHBK-98):Gọi K là điểm đối xứng của điểm I(2,-1,3) qua đường thẳng (d) .Xác định toạ độ K. 3) Lập phương trình mặt cầu tâm I cắt đường thẳng (d) tại hai điểm phân biệt A,B sao cho AB=12. 4) Lập phương trình mặt cầu tâm I tiếp xúc với mặt phẳng (P). 5) Lập phương trình mặt cầu tâm I cắt mặt phẳng (P) theo giao tuyến là một đường tròn có diện tích bằng 16ẽ MẶT CẦU NGOẠI TIẾP KHỐI ĐA DIỆN Bài 1: (ĐH Huế-96): Trong không gian với hệ toạ độ trực chuẩn 0xyz ,cho bốn điểm A(1,0,1), B(2,1,2),C(1,-1,1),D(4,5,-5). 1) Viết phương trình tham số của đường thẳng đi qua D và vuông góc với mặt phẳng (ABC). 2) Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD. Bài 2: Cho bốn điểm 0(0,0,0),A(6,3,0), B(-2,9,1), S(0,5,8) Chuyên đề LTĐH – Giải tích trong không gian Biên soạn: Lê Minh Đạt – 0918 344 200 36 1) (ĐHKT-99): CMR SB vuông góc SA. 2) (ĐHKT-99): CMR hình chiếu của cạnh SB lên mặt phẳng (0AB) vuông góc với cạnh 0A. Gọi K là giao điểm của hình chiếu đó với 0A. Hãy xác định toạ dộ của K. 3) Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD. 4) (ĐHKT-99): Gọi P,Q lần lượt là điểm giữa của các cạnh S0,AB . Tìm toạ độ của điểm M trên SB sao cho PQ và KM cắt nhau. Bài 3: Trong không gian với hệ toạ độ trực chuẩn 0xyz ,cho bốn điểm A(4,4,4), B(3,3,1), C(1,5,5), D(1,1,1). 1) (HVKTQS-98): Tìm hình chiếu vuông góc của D lên (ABC) và tính thể tích tứ diện ABCD. 2) (HVKTQS-98): Viết phương trình tham số đường thẳng vuông góc chung của AC và BD. 3) Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD. 4) Tính thể tích tứ diện ABCD. Bài 4: cho bốn điểm A(-1,3,2), B(4,0,-3), C(5,-1,4), D(0,6,1). 1) (HVNHTPHCM-99):Viết phương trình tham số của đường thẳng BC .Hạ AH vuông góc BC .Tìm toạ độ của điểm H. 2) (HVNHTPHCM-99):Viết phương trình tổng quát của (BCD) .Tìm khoảng cách từ A đến mặt phẳng (BCD). 3) Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD. Bài 5: Trong không gian 0xyz, cho hình chóp .biết toạ độ bốn đỉnh S(5,5,6), A(1,3,0), B(-1,1,4), C(1,-1,4), D(3,1,0). 1) Lập phương trình các mặt của hình chóp. 2) Lập phương trình mặt cầu (S) ngoại tiếp hình chóp . 3) Tính thể tích hình chóp SABCD Bài 6: (HVKTMM-97) Cho bốn điểm A(1,2,2), B(-1,2,-1), C(1,6,-1), D(-1,6,2). 1) CMR tứ diện ABCD có cặp cạnh đối diện bằng nhau . 2) Xác định toạ độ trọng tâm G của tứ diện. 3) Viết phương trình mặt cầu ngoại tiếp ,nội tiếp tứ diện ABCD. MẶT CẦU NGOẠI TIẾP KHỐI ĐA DIỆN Bài 1: Lập phương trình mặt cầu nội tiếp hình chóp SABCD ,biết: 1) )0,0, 3 4(   S ,A(0,-4,0), B(0,-4,0),C(3,0,0). Bài 2: Cho hình chóp SABCD .Đỉnh )4, 2 9 , 2 1(S đáy ABCD là hình vuông có A(-4,5,0) ,đươngf chéo BD có phương trình :   0 087 :     z yx d 1) Tìm toạ độ các đỉnh của hình chóp . 2) Lập phương trình nặt cầu ngoại tiếp hình chóp. 3) Lập phương trình mặt cầu nội tíêp hình chóp. Bài 3: Cho ba điểm A(2,0,0), B(0,2,0), C(0,0,3). 1) Viết phương trình tổng quát các mặt phẳng (0AB), (0BC), (0CA), (ABC). 2) Xác định tâm I của mặt cầu nội tiếp tứ diện 0ABC . 3) Tìm toạ độ điểm J đối xứng với I qua mặt phẳng (ABC). Bài 4: (HVKTMM-99):Cho bốn điểm A(1,2,2), B(-1,2,-1), C(1,6,-1), D(-1,6,2). 1) CMR tứ diện ABCD có các cặp cạnh đối diện bằng nhau. 2) Xác định toạ độ trọng tâm G của tứ diện . 3) Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD. 4) Viết phương trình mặt cầu nội tiếp tứ diện ABCD. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐIỂM VÀ MẶT CẦU Bài 1: Cho mặt cầu   034: 222  zyxzyxS .xét vị trí tưpng đối của điểm A đối với mặt cầu (S) trong các trường hợp sau: 1) điểm A(1,3,2). 2) điểm A(3,1,-4). 3) điểm A(-3,5,1). Bài 2: Tìm toạ độ điểm M thuộc mặt cầu   03242: 222  zyxzyxS .Sao cho khoảng cách MA đạt giá trị lớn nhất ,nhỏ nhất,biết: 1) điểm A(1,-2,0). 2) điểm A(1,1,-2). Chuyên đề LTĐH – Giải tích trong không gian Biên soạn: Lê Minh Đạt – 0918 344 200 37 VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ MẶT CẦU Bài 1: Cho mặt cầu   06222: 222  zyxzyxS .Tìm toạ độ điểm M thuộc (S) sao cho khoảng cách từ M đến (d) đạt giá trị lớn nhất, nhỏ nhất,biết: 1)   R tz ty tx d        t 1 1 2 : 2.   012 032 :     zy zyx d VỊ TRÍ TƯƠNG ĐỐI CỦA MẶT PHẲNG VÀ MẶT CẦU Bài 1: (ĐHDL-97):Trong không gian với hệ toạ đô trực chuẩn 0xyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình :   022: 222  xzyxS ,(P):x+z-1=0. 1) Tính bán kính và toạ độ tâm của mặt cầu (S). 2) Tính bán kính và toạ độ tâm của đường tròn giao của (S) và (P). Bài 2: (ĐHSPV-99): Cho điểm I(1,2,-2) và mặt phẳng 2x+2y+z+5=0 . 1) Lập phương trình mặt cầu (S) tâm I sao cho giao của (S) và (P) là đường tròn có chu vi bằng 8ẽ . 2) CMR mặt cầu (S) tiếp xúc với mặt phẳng 2x-2=y+3=z. 3) Lập phương trình mặt phẳng chứa đường thẳng (d) và tiếp xúc với (S). Bài 3: (ĐHBK-A-2000): Cho hình chóp SABCD với S(3,2,-1), A(5,3,- 1), B(2,3,-4), C(1,2,0). 1) CMR SABC có đáy ABC là tam giác đều và ba mặt bên là các tam giác vuông cân. 2) Tính toạ độ điểm D đối xứng với điểm C qua đường thẳng AB. M là điểm bất kì thuộc mặt cầu tâm D, bán kính 18R .(điểm M không phụ thuộc mặt phẳng (ABC) ). Xét tam giác có độ dài các cạnh bằng độ dài các đoạn tjẳmg MA, MB, MC. Hỏi tam giác đó có đặc điểm gì ? Bài 4: (ĐHPCCC-2000): Cho đường tròn (C) có phương trình :       0 14 : 222 z zyxC .Lập phương trình mặt cầu chứa (C) và tiệp xúc với mặt phẳng: 2x+2y-z-6=0. Bài 5: (CĐHQ-96): Cho mặt cầu (S) và mặt phẳng (P) có phương trình :   9)1()2()3(: 222  zyxS ,(P):x+2y+2z+11=0. Tìm điểm M sao cho M thuộc (S) sao cho khoảng cách từ M tới mặt phẳng (P) nhỏ nhất . VỊ TRÍ TƯƠNG ĐỐI CỦA HAI MẶT CẦU Bài 1: Cho hai mặt cầu:   0722: 2221  yxzyxS ,  02: 2222  xzyxS 1) CMR hai mặt cầu (S1) và (S2) cắt nhau. 2) Viết phương trình mặt cầu qua giao điểm của (S1) và (S2) qua điểm M(2,0,1). Bài 2: Cho hai mặt cầu:   9: 2221  zyxS ,  06222: 2222  zyxzyxS 1) CMR hai mặt cầu (S1) và (S2) cắt nhau. 2) Viết phương trình mặt cầu qua giao điểm của (S1) và (S2) qua điểm M(-2,1,-1).

Dạng 4: Giải Bài Toán Bằng Cách Lập Phương Trình

* Bước 1: + Lập PT hoặc hệ Phương trình;

(nên lập bảng để tìm Phương trình)

– Chọn ẩn, tìm đơn vị và ĐK cho ẩn.

– Biểu diễn mối quan hệ còn lại qua ẩn và các đại lượng đã biết.

– Lập HPT.

* Bước 2: Giải PT hoặc HPT.

* Bước 3: Đ ối chiếu với ĐK để trả lời.

II. Bài tập và hướng dẫn

. Hai ô tô cùng khởi hành một lúc từ hai tỉnh A và B cách nhau 160 km, đi ngược chiều nhau và gặp nhau sau 2 giờ. Tìm vận tốc của mỗi ô tô biết rằng nếu ô tô đi từ A tăng vận tốc thêm 10 km/h sẽ bằng hai lần vận tốc ôtô đi từ B.

Bài 2: Một người đi xe đạp từ A đến B với vận tốc 9km/h . Khi đi từ B về A người ấy đi đường khác dài hơn 6 km, với vận tốc 12km/h. nên thời gian ít hơn thời gian khi đI là 20 phút. Tính quãng đường AB?

Bài 3. Hai ca nô cùng khởi hành từ hai bến A, B cách nhau 85 km , đi ngược chiều nhau và gặp nhau sau 1 giờ 40 phút.Tính vận tốc riêng của mỗi ca nô biết rằng vận tốc của ca nô xuôi dòng lớn hơn vận tốc của ca nô ngược dòng là 9 km/h (có cả vận tốc dòng nước) và vận tốc dòng nước là 3 km/h.

Bài 5. Hai lớp 9A và 9B có tổng cộng 70 HS. nếu chuyển 5 HS từ lớp 9A sang lớp 9B thì số HS ở hai lớp bằng nhau. Tính số HS mỗi lớp.

Bài 6: Hai thùng đựng dầu: Thùng thứ nhất có 120 lít,thùng thứ hai có 90 lít. Sau khi kấy ra ở thùng thứ nhát một lượng dầu gấp ba lượng dầu lấy ra ở thùng thứ hai, thì lượng dầu còn lại trong thùng thứ hai gấp đôi lượng dầu còn lại trong thùng thứ nhất. Hỏi đã lấy ra bao nhiêu lít dầu ở mỗi thùng?

Bài 7. Hai trường A, B có 250 HS lớp 9 dự thi vào lớp 10, kết quả có 210 HS đã trúng tuyển. Tính riêng tỉ lệ đỗ thì trường A đạt 80%, trường B đạt 90%. Hỏi mỗi trường có bao nhiêu HS lớp 9 dự thi vào lớp 10.

Bài 8. Hai vòi nước cùng chảy vào một bể không có nước sau 2 giờ 55 phút thì đầy bể. Nếu chảy riêng thì vòi thứ nhất cần ít thời gian hơn vòi thứ hai là 2 giờ. Tính thời gian để mỗi vòi chảy riêng thì đầy bể.

Bài 9. Hai tổ cùng làm chung một công việc hoàn thành sau 15 giờ. nếu tổ một làm trong 5 giờ, tổ hai làm trong 3 giờ thì được 30% công việc. Hỏi nếu làm riêng thì mỗi tổ hoàn thành trong bao lâu.

: Biết rằng m lít chất tan trong M lít dung dịch thì nồng độ phần trăm là $ displaystyle frac{m}{M}.100%$

Bài 10: Khi thêm 200g Axít vào dung dịch Axít thì dung dịch mới có nồng độ A xít là 50%. Lại thêm 300gam nước vào dung dịch mới ,ta được dung dịch A xít có nồng độ là 40%.Tính nồng độ A xít trong dung dịch đầu tiên.

: Khối lượng nước trong dung dịch đầu tiên là x gam, khối lượng A xít trong dung dịch đầu tiên là y gam Sau khi thêm, 200 gam A xít vào dung dịch A xít ta cólượng A xít là: ( y + 200) gam và nồng độ là 50% Do đó tacó:$ frac{{y+200}}{{y+200+x}}=frac{1}{2}$$ Rightarrow x-y=200$ (1)

Sau khi thêm 300 gam nước vào dung dịch thì khối lượng nước là: (x + 300) gam và nồng độ là 40%(=2/5) nên ta có: $ frac{{y+200}}{{y+200+x+300}}=frac{2}{5}$$ Rightarrow 2x-3y=0$ (2)

Giải hệ (1) và (2) ta được x = 600; y = 400 Vậy nông độ A xít là: $ frac{{400}}{{600+400}}=40%$

: Biết răng: + m Kg nước giảm t0C thì toả ra một nhiệt lượng Q = m.t (Kcal). + m Kg nước tăng t0C thì thu vào một nhiệt lượng Q = m.t (Kcal).

Phải dùng bao nhiêu lít nước sôi 100 0C và bao nhiêu lít nước lạnh 20 0C để có hỗn hợp 100lít nước ở nhiệt độ 40 0 C.

HD: Gọi khối lượng nước sôi là x Kg thì khối lượng nước lạnh là: 100 – x (kg)

Nhiệt lương nước sôi toả ra khi hạ xuống đến 40 0 C là: x(100 – 40) = 60x (Kcal)

Nhiệt lượng nước lạnh tăng từ 20 0C -đến 40 0 C là: (100 – x).20. (Kcal)

Vì nhiệt lượng thu vào bằng nhiệt lượng toả ra nên ta có : 60x = (100 – x).20

Giải ra ta có: x = 25.Vậy khôí lượng nước sôi là 25Kg; nước lạnh là 75 Kg tương đương với 25lít và 75 lít.

Bài 12. Một thửa ruộng có chu vi 200m . nếu tăng chiều dài thêm 5m, giảm chiều rộng đi 5m thì diện tích giảm đi 75 $ {{m}^{2}}$. Tính diện tích thửa ruộng đó.

Bài 13. Một phòng họp có 360 ghế được xếp thành từng hàng và mỗi hàng có số ghế ngồi bằng nhau. Nhưng do số người đến họp là 400 nên phải kê thêm 1 hàng và mỗi hàng phải kê thêm 1 ghế mới đủ chỗ. Tính xem lúc đầu phòng họp có bao nhiêu hàng ghế và mỗi hàng có bao nhiêu ghế.

Các Dạng Bài Tập Toán Về Phương Trình Đường Tròn

I. Lý thuyết về phương trình đường tròn

1. Phương trình đường tròn:

– Phương trình đường tròn có tâm I(a;b), bán kính R là: (x – a) 2 + (y – b) 2 = R 2

2. Phương trình tiếp tuyến của đường tròn

– Cho điểm M 0(x 0; y 0) nằm trên đường tròn (C) tâm I(a;b), tiếp tuyến tại M 0 của (C) có phương trình:

* Dạng 1: Nhận dạng phương trình đường tròn, tìm điều kiện để 1 PT là phương trình đường tròn

– Nếu P ≤ 0 thì (*) là KHÔNG là PT đường tròn.

+) Cách 2: Đưa phương trình đã cho về dạng: x 2 + y 2 – 2ax – 2by + c = 0 (**)

– Nếu P ≤ 0 thì (**) là KHÔNG là PT đường tròn.

Ví dụ 1: Trong các phương trình sau, phương trình nào biểu diễn phương trình đường tròn, tìm tâm và bán kính nếu có.

– Ta có a = -1; b = 2; c = 9 nên a 2 + b 2 – c = (-1) 2 + (2) 2 – 9 = -4 < 0, nên đây không phải là phương trình đường tròn.

– Tương tự có: a 2 + b 2 – c = (3) 2 + (-2) 2 – 13 = 0 < 0, nên đây không phải là phương trình đường tròn.

d) 5x 2 + 4y 2 + x – 4y + 1 = 0, phương trình này không phải pt đường tròn vì hệ số của x 2 và y 2 khác nhau.

a) Tìm điều kiện của m để (C m) là phương trình đường tròn.

b) Khi (C m) là pt đường tròn tìm toạ độ tâm và bán kính theo m.

a) CMR (C α) là đường tròn

b) Xác định α để (C α) có bán kính lớn nhất

c) Tìm quỹ tính tâm I của (C α)

– Lưu ý: Nếu α = kπ đường tròn là 1 điểm.

b) Để (C α) có bán kính lớn nhất:

⇒ R max = √2 khi sinα = 1 ⇒ α = (π/2 + kπ).

– Tìm toạ độ tâm I(a;b) của đường tròn (C)

– Tìm bán kính R của (C)

– Viết phương trình đường tròn (C) dạng: (x – a) 2 + (y – b) 2 = R 2

° Cách 2: Giả sử phương trình đường tròn (C) có dạng: x 2 + y 2 – 2ax – 2by + c = 0.

– Từ điều kiện bài toán cho thiết lập hệ pt 3 ẩn a, b, c

– Giải hệ tìm a, b, c thay vào pt đường tròn (C).

* Lưu ý: Đường tròn (C) đi qua điểm A, B thì IA 2 = IB 2 = R 2 và thường được vận dụng vào bài toán yêu cầu viết phương trình đường tròn ngoại tiếp tam giác ABC (chính là viết pt đường tròn qua 3 điểm A, B, C).

Ví dụ: Lập phương trình đường tròn (C) trong các trường hợp sau:

a) Có tâm I(1;-3) và đi qua điểm O(0;0)

b) Có đường kính AB với A(1;1), B(5,3).

c) Đi qua 3 điểm A(-1;3), B(3;5), C(4;-2)

a) (C) có tâm I(1;-3) và đi qua điểm O(0;0):

b) (C) có đường kính AB với A(1;1), B(5,3).

– Ta có toạ độ tâm I của (C) là trung điểm A,B là:

c) Đường tròn (C) đi qua 3 điểm A(-1;3), B(3;5), C(4;-2)

– Goi (C) có dạng: x 2 + y 2 – 2ax – 2by + c = 0.

– Vì (C) đi qua A, B, C nên thay lần lượt toạ độ A, B, C vào pt đường tròn (C) ta có hệ sau:

* Dạng 3: Viết phương trình đường tròn tiếp xúc với đường thẳng – Đường tròn (C) tiếp xúc với đường thẳng (Δ) thì: d[I,Δ] = R – Đường tròn (C) tiếp xúc với đường thẳng (Δ) tại điểm A thì: d[I,Δ] = IA = R – Đường tròn (C) tiếp xúc với 2 đường thẳng (Δ1) và (Δ2) thì: d[I,Δ1] = d[I,Δ2] = R

Ví dụ 1: Lập phương trình đường tròn (C) trong mỗi trường hợp sau:

a) (C) có tâm I(2;5) và tiếp xúc với Ox

b) (C) có tâm I(-1;2) và tiếp xúc với đường thẳng (Δ): x + 2y – 8 = 0

c) (C) đi qua A(2;-1) và tiếp xúc với 2 trục toạ độ Ox, Oy

a) (C) có tâm I(2;5) và tiếp xúc với Ox

– Ox có phương trình: y = 0

– Bán kính R của đường tròn là khoảng cách từ I đến Ox ta có:

⇒ Phương trình đường tròn (C) có dạng: (x – 2) 2 + (y – 5) 2 = 25

b) (C) có tâm I(-1;2) và tiếp xúc với đường thẳng (Δ): x + 2y – 8 = 0

⇒ Phương trình đường tròn (C) có dạng: (x + 1) 2 + (y – 2) 2 = 5

c) (C) đi qua A(2;-1) và tiếp xúc với 2 trục toạ độ Ox, Oy

– Vì A nằm ở góc phần tư thứ tư nên đường tròn cũng nằm trong góc phần tư thứ tư này, nên toạ độ tâm I=(R;-R).

⇔ R = 1 hoặc R = 5

⇒ Vậy có 2 đường tròn thoả mãn điều kiện bài toán là:

Ví dụ 2: Trong hệ toạ độ Oxy cho hai đường thẳng (d 1): x + 2y – 3 = 0 và (d 2): x + 3y – 5 = 0. Lập phương trình đường tròn có bán kính bằng R=√10 có tâm thuộc d 1 và tiếp xúc với d 2.

– Tâm I ∈ d 1 nên I(-2a+3;a) do (C) tiếp xúc với d 2 nên ta có:

⇒ Có 2 đường tròn thoả mãn điều kiện là:

Ví dụ 3: Trong hệ toạ độ Oxy cho hai đường thẳng (d 1): x + 2y – 8 = 0 và (d 2): 2x + y + 5 = 0 . Viết phương trình đường tròn có tâm nằm trên (d): x – 2y + 1 = 0 tiếp xúc với (d 1) và d 2.

– Tâm I ∈ dnên I(2a-1;a) do (C) tiếp xúc với (d 1) và (d 2) nên ta có:

Ví dụ 1: Cho 2 điểm A(4;0) và B(0;3)

a) Viết phương trình đường tròn ngoại tiếp tam giác OAB

b) Viết phương trình đường tròn nội tiếp tam giác OAB

a) Tam giác OAB vuông tại O nên tâm của đường tròn ngoại tiếp tam giác tam giác OAB là trung điểm của cạnh huyền AB nên tâm toạ độ tâm I của đường tròn nội tiếp là: I=(2;3/2).

⇒ Bán kính: R = IA = 5/2

b) Ta sẽ tính diện tích và nửa chu vi của OAB

– Vì đường tròn tiếp xúc với 2 trục toạ độ nên tâm I r=(r;r)=(1;1)

⇒ Pt đường tròn là: (x – 1) 2 + (y – 1) 2 = 1

Ví dụ 2: Viết phương trình đường tròn nội tiếp tam giác ABC tạo bởi 3 đường thẳng:

(d 2): 7x – 24y + 55 = 0

– Gọi ABC là tam giác đã cho với các cạnh là:

AB: 4x – 3y – 65 = 0

BC: 7x – 24y + 55 = 0

CA: 3x + 4y – 5 = 0

– Ta tính được A(11;-7), B(23;9), C(-1;2)

– Tính độ dài các cạnh ta có: AB = 20 ; BC = 25; CA = 15

– Diện tích tam giác ABC: S ABC = 150

– Bán kính đường tròn nội tiếp là: r = S/P = 150/30 = 5.

– Giải hệ trên ta được: a = 10 và b = 0;

⇒ Phương trình đường tròn cần tìm là: (x – 10) 2 + y 2 = 25