Top 12 # Xem Nhiều Nhất Lời Giải 2.0 Mới Nhất 3/2023 # Top Like | Asianhubjobs.com

Giải Toán Lớp 9 Bài 1: Hàm Số Y = Ax2 (A ≠ 0)

Giải Toán lớp 9 Bài 1: Hàm số y = ax2 (a ≠ 0) Giải Toán lớp 9 Bài 1: Hàm số y = ax2 (a ≠ 0) Bài 1 (trang 30-31 SGK Toán 9 tập 2) : Diện tích S của hình tròn được tính bởi công thức S = πR 2 , trong đó R là bán kính của hình tròn. a) Dùng máy tính bỏ túi, tính các giá …

Giải Toán lớp 9 Bài 1: Hàm số y = ax2 (a ≠ 0)

Giải Toán lớp 9 Bài 1: Hàm số y = ax2 (a ≠ 0)

Bài 1 (trang 30-31 SGK Toán 9 tập 2): Diện tích S của hình tròn được tính bởi công thức S = πR 2, trong đó R là bán kính của hình tròn.

a) Dùng máy tính bỏ túi, tính các giá trị của S rồi điền vào các ô trống trong bảng sau ( π ≈ 3,14, làm tròn kết quả đến chữ số thập phan thứ hai).

b) Nếu bán kính tăng gấp 3 lần thì diện tích tăng hay giảm bao nhiêu lần?

c) Tính bán kính của hình tròn, làm tròn kết quả đến chữ số thập phân thứ hai, nếu biết diện tích của nó bằng 79,5 xm 2.

Lời giải

a) Nhấn các nút sau:

Bài 2 (trang 31 SGK Toán 9 tập 2): Một vật rơi ở độ cao so với mặt đất là 100m. Quãng đường chuyển động s( mét) của vật rơi phụ thuộc vào thời gian t (giây) bởi công thức: s = 4t 2.

a) Sau 1 giây, vật này cách mặt đất bao nhiêu mét? Tương tự, sau 2 giây?

b) Hỏi sau bao lâu vật này tiếp đất?

Lời giải

Bài 3 (trang 31 SGK Toán 9 tập 2): Lực F của gió khi thổi vuông góc vào cánh buồm tỉ lệ thuận với bình phương vận tốc v của gió, tức là F = av 2 (a là hằng số). Biết rằng khi vận tốc gió bằng 2 m/s thì lực tác động lên cánh buồm của một con thuyền bằng 120N (Niu-tơn).

a) Tính hằng số a.

b) Hỏi khi v = 10 m/s thì lực F bằng bao nhiêu? Cùng câu hỏi này khi v =20 m/s?

c) Biết rằng cánh buồm chỉ có thể chịu được một áp lực tối đa là 12000N, hỏi con thuyền có thể đi được trong gió bão với vận tốc gió 90 km/h hay không?

Lời giải

Từ khóa tìm kiếm:

giai VBT trang 90 bai 79 tap 1

Giải Toán Lớp 9 Bài 2: Đồ Thị Hàm Số Y = Ax2 (A ≠ 0)

Giải Toán lớp 9 Bài 2: Đồ thị hàm số y = ax2 (a ≠ 0)

Bài 4 (trang 36 SGK Toán 9 tập 2): Cho hai hàm số:

Lời giải

Điền vào ô trống:

Bài 5 (trang 37 SGK Toán 9 tập 2): Cho ba hàm số:

a) Bảng giá trị tương ứng của x và y:

Bài 6 (trang 38 SGK Toán 9 tập 2): Cho hàm số y = f(x) = x 2.

a) Vẽ đồ thị của hàm số đó.

b) Tính các giá trị f(-8); f(-1,3); f(-0,75); f(1,5).

c) Dùng đồ thị để ước lượng các giá trị (0,5) 2; (-1,5) 2; (2,5) 2.

d) Dùng đồ thị để ước lượng vị trí các điểm trên trục hoành biểu diễn các số √3 ; √7.

Lời giải

a) Lập bảng giá trị tương ứng của x, y và vẽ đồ thị:

a) Tìm hệ số a.

b) Điểm A(4; 4) có thuộc đồ thị không?

c) Hãy tìm thêm hai điểm nữa(không kể điểm O) để vẽ đồ thị.

Vẽ đồ thị:

a) Tìm hệ số a.

b) Tìm tung đệ của điểm thuộc parapol có hoành độ x = -3.

c) Tìm các điểm thuộc parapol có tung độ y = 8.

a) Vẽ đồ thị của các hàm số này trên cùng một mặt phẳng tọa độ.

b) Tìm tọa độ các giao điểm của hai đồ thị đó.

Lời giải

a)

– Vẽ đường thẳng y = -x + 6

– Lập bảng giá trị và vẽ đồ thị hàm số y = 1/3 x 2

Vậy tọa độ giao điểm của hai đồ thị là (3, 3) và (-6, 12).

(Vì lý do hình hơi bé nên mình chưa minh họa được tọa độ giao điểm (-6, 12). Các bạn vẽ to hình để thấy rõ giao điểm này.)

Bài 10 (trang 39 SGK Toán 9 tập 2): Cho hàm số y = -0,75x 2. Qua đồ thị của hàm số đó, hãy cho biết khi x tăng từ -2 đến 4 thì giá trị nhỏ nhất và giá trị lớn nhất của y là bao nhiêu?

Lời giải

– Lập bảng giá trị:

Từ khóa tìm kiếm

Giải Bài Tập Sgk Toán Lớp 9 Bài 2: Đồ Thị Hàm Số Y = Ax2 (A ≠0)

Giải bài tập SGK Toán lớp 9 trang 34, 35 SGK

Giải bài tập Toán lớp 9 bài 2: Đồ thị hàm số y = ax2 (a ≠0)

Nhằm giúp quá trình ôn tập và củng cố kiến thức chuẩn bị cho kì thi học kì mới môn Toán lớp 9 của các bạn học sinh trở nên thuận lợi hơn chúng tôi xin giới thiệu với các bạn bài: Giải bài tập SGK Toán lớp 9 bài 2: Đồ thị hàm số y = ax2 (a ≠0). Mời các bạn cùng tham khảo

Trả lời câu hỏi Toán 9 Tập 2 Bài 2 trang 34: Hãy nhận xét một vài đặc điểm của đồ thị này bằng cách trả lời các câu hỏi sau (h.6):

– Đồ thị nằm ở phía trên hay phía dưới trục hoành?

– Vị trí của cặp điểm A, A’ đối với trục Oy? Tương tự đối với các điểm B, B’ và C, C’?

– Điểm nào là điểm thấp nhất của đồ thị?

Lời giải

Đồ thị nằm ở phía trên trục hoành

– Các cặp điểm A và A’; B và B’; C và C’ đối xứng nhau qua trục Oy

– Điểm O (0;0) là điểm thấp nhất của đồ thị.

Trả lời câu hỏi Toán 9 Tập 2 Bài 2 trang 34: Nhận xét một vài đặc điểm của đồ thị và rút ra những kết luận, tương tự như đã làm đối với hàm y = 2x 2.

Lời giải

– Đồ thị nằm ở phía dưới trục hoành

– Các cặp điểm M và M’; N và N’; P và P’ đối xứng nhau qua trục Oy

– Điểm O (0;0) là điểm cao nhất của đồ thị.

Trả lời câu hỏi Toán 9 Tập 2 Bài 2 trang 35: Cho hàm số y = (-1)/2 x 2.

a) Trên đồ thị của hàm số này, xác định điểm D có hoành độ bằng 3. Tìm tung độ của điểm D bằng hai cách: bằng đồ thị; bằng cách tính y với x = 3. So sánh hai kết quả.

b) Trên đồ thị làm số này, xác định điểm có tung độ bằng -5. Có mấy điểm như thế? Không làm tính, hãy ước lượng giá trị hoành độ của mỗi điểm.

Lời giải

a) Từ đồ thị, ta xác định được tung độ của điểm D là (-9)/2

Với x = 3 ta có: y = (-1)/2 x 2 = (-1)/2.3 2 = (-9)/2

Hai kết quả là như nhau.

b) Có 2 điểm có tung độ bằng -5

Giá trị của hoành độ là ≈ 3,2

Bài 4 (trang 36 SGK Toán 9 tập 2): Cho hai hàm số

x

-2

-1

0

1

2

x

-2

-1

0

1

2

Nhận xét về tính đối xứng của hai đồ thị đối với trục Ox.

Lời giải

+ Điền vào ô trống:

Vậy ta có bảng:

Tương tự như vậy với hàm số

+ Vẽ đồ thị hàm số:

Trên mặt phẳng lưới lấy các điểm A(-2; 6);

Nối các điểm trên theo một đường cong ta được parabol

Lấy các điểm A’ (-2; -6);

Nối các điểm trên theo một đường cong ta được parabol

Nhận xét: Đồ thị hàm số

Bài 5 (trang 37 SGK Toán 9 tập 2): Cho ba hàm số:

a) Vẽ đồ thị của ba hàm số này trên cùng một mặt phẳng tọa độ.

b) Tìm ba điểm A, B, C có cùng hoành độ x = -1,5 theo thứ tự nằm trên ba đồ thị. Xác định tung độ tương ứng của chúng.

c) Tìm ba điểm A’; B’; C’ có cùng hoành độ x = 1,5 theo thứ tự nằm trên ba đồ thị. Kiểm tra tính đối xứng của A và A’; B và B’; C và C’.

d) Với mỗi hàm số trên, hãy tìm giá trị của x để hàm số đó có giá trị nhỏ nhất.

Lời giải

a) Bảng giá trị tương ứng của x và y:

Vẽ đồ thị:

Trên mặt phẳng lưới lấy các điểm (-2; 2); (-1; ½); (0; 0); (1; 1/2); (2; 2), nối chúng thành một đường cong ta được đồ thị hàm số y = ½.x 2.

Lấy các điểm (-2; 4); (-1; 1); (0; 0); (1; 1); (2; 4), nối chúng thành một đường cong ta được đồ thị hàm số y = x 2.

Lấy các điểm (-2; 8); (-1; 2); (0; 0); (1; 2); (2; 8), nối chúng thành một đường cong ta được đồ thị hàm số y = 2x 2.

b) Lấy các điểm A, B, C lần lượt nằm trên 3 đồ thị và có hoành độ bằng -1,5.

Khi đó tung độ điểm A bằng 9/8; tung độ điểm B bằng 9/4; tung độ điểm C bằng 9/2

c)

Lấy các điểm A’, B’, C’ lần lượt nằm trên 3 đồ thị và có hoành độ bằng 1,5.

Khi đó

Nhận xét: A và A’; B và B’; C và C’ đối xứng nhau qua trục Oy.

d) Hàm số có giá trị nhỏ nhất ⇔ y nhỏ nhất.

Dựa vào đồ thị nhận thấy cả ba hàm số đạt y nhỏ nhất tại điểm O(0; 0).

Vậy ba hàm số trên đều đạt giá trị nhỏ nhất tại x = 0.

Luyện tập (trang 38-39)

Bài 6 (trang 38 SGK Toán 9 tập 2): Cho hàm số y = f(x) = x 2.

a) Vẽ đồ thị của hàm số đó.

b) Tính các giá trị f(-8); f(-1,3); f(-0,75); f(1,5).

c) Dùng đồ thị để ước lượng các giá trị (0,5) 2; (-1,5) 2; (2,5) 2.

d) Dùng đồ thị để ước lượng vị trí các điểm trên trục hoành biểu diễn các số √3 ; √7.

Lời giải

a) Ta có bảng giá trị:

Vẽ đồ thị hàm số :

Trên hệ trục tọa độ xác định các điểm (-2 ; 4) ; (-1 ; 1) ; (0 ; 0) ; (1 ; 1) ; (2 ; 4). Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số y = x 2.

f(-0,75) = (-0,75) 2 = 0,5625

c)

Trên đồ thị hàm số, lấy các điểm M, N, P có hoành độ lần lượt bằng -1,5; 0,5 và 2,5.

Dựa vào đồ thị nhận thấy các điểm M, N, P có tọa độ là: M(-1,5 ; 2,25); N(0,5 ; 0,25); P(2,5 ; 6,25).

d)

Ta có:

⇒ Các điểm 2.

Để xác định các điểm

Chiếu vuông góc các điểm A, B trên trục hoành ta được các điểm

Bài 7 (trang 38 SGK Toán 9 tập 2): Trên mặt phẳng tọa độ (h.10), có một điểm M thuộc đồ thị của hàm số y = ax 2.

a) Tìm hệ số a.

b) Điểm A(4; 4) có thuộc đồ thị không?

c) Hãy tìm thêm hai điểm nữa(không kể điểm O) để vẽ đồ thị.

Lời giải

a) Dựa trên hình 10 ta thấy điểm M có tọa độ (2; 1).

M thuộc đồ thị hàm số y = ax 2

b) Với x = 4 ta có

Vậy điểm A(4 ; 4) thuộc đồ thị hàm số

c) Chọn x = -2 ⇒

Vậy (-2; 1) thuộc đồ thị hàm số.

Chọn x = -4 ⇒

Vậy (-4; 4) thuộc đồ thị hàm số.

* Vẽ đồ thị:

Bài 8 (trang 38 SGK Toán 9 tập 2): Biết rằng đường cong trong hình 11 là một parapol y = ax 2.

a) Tìm hệ số a.

b) Tìm tung đệ của điểm thuộc parapol có hoành độ x = -3.

c) Tìm các điểm thuộc parapol có tung độ y = 8.

Lời giải

a) Ta có đồ thị hàm số y = ax 2 đi qua điểm (-2 ; 2)

b) Tại x = -3 ta có:

Vậy điểm có hoành độ x = -3 thì tung độ bằng 4,5.

c) Ta có: y = 8 ⇔ 2 = 16 ⇔ x = 4 hoặc x = -4.

Vậy các điểm thuộc parabol có tung độ bằng 8 là (4; 8) và (-4; 8).

Bài 9 (trang 39 SGK Toán 9 tập 2): Cho hai hàm số

a) Vẽ đồ thị của các hàm số này trên cùng một mặt phẳng tọa độ.

b) Tìm tọa độ các giao điểm của hai đồ thị đó.

Lời giải

a)

– Vẽ đường thẳng y = -x + 6

Cho x = 0 ⇒ y = 6 được điểm (0, 6)

Cho x = 6 ⇒ y = 0 được điểm (6, 0)

⇒ Đường thẳng y = -x + 6 đi qua các điểm (6; 0) và (0; 6).

– Lập bảng giá trị và vẽ đồ thị hàm số

⇒ Parabol đi qua các điểm (3; 3); (-3; 3); (-6; 12); (6; 12); (0; 0).

b) Dựa vào đồ thị ta nhận thấy giao điểm của hai đồ thị là A(-6; 12) và (3; 3).

Bài 10 (trang 39 SGK Toán 9 tập 2): Cho hàm số y = -0,75x 2. Qua đồ thị của hàm số đó, hãy cho biết khi x tăng từ -2 đến 4 thì giá trị nhỏ nhất và giá trị lớn nhất của y là bao nhiêu?

Lời giải

– Lập bảng giá trị:

– Vẽ đồ thị:

– Quan sát đồ thị hàm số y = -0,75x 2:

Khi x tăng từ -2 đến 4, y tăng từ -3 đến 0 rồi lại giảm xuống -12.

Vậy: Giá trị nhỏ nhất của y = -12 đạt được khi x = 4

Giá trị lớn nhất của y = 0 đạt được khi x = 0.

………………………………

Sách Giải Bài Tập Toán Lớp 9 Bài 2: Đồ Thị Hàm Số Y = Ax (A ≠ 0)

Sách giải toán 9 Bài 2: Đồ thị hàm số y = ax (a ≠ 0) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 9 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Trả lời câu hỏi Toán 9 Tập 2 Bài 2 trang 34: Hãy nhận xét một vài đặc điểm của đồ thị này bằng cách trả lời các câu hỏi sau (h.6):

– Đồ thị nằm ở phía trên hay phía dưới trục hoành ?

– Vị trí của cặp điểm A, A’ đối với trục Oy ? Tương tự đối với các điểm B, B’ và C, C’ ?

– Điểm nào là điểm thấp nhất của đồ thị ?

Lời giải

Đồ thị nằm ở phía trên trục hoành

– Các cặp điểm A và A’; B và B’; C và C’ đối xứng nhau qua trục Oy

– Điểm O (0;0) là điểm thấp nhất của đồ thị.

Trả lời câu hỏi Toán 9 Tập 2 Bài 2 trang 34: Nhận xét một vài đặc điểm của đồ thị và rút ra những kết luận, tương tự như đã làm đối với hàm y = 2x 2.

Lời giải

– Đồ thị nằm ở phía dưới trục hoành

– Các cặp điểm M và M’; N và N’; P và P’ đối xứng nhau qua trục Oy

– Điểm O (0;0) là điểm cao nhất của đồ thị.

Trả lời câu hỏi Toán 9 Tập 2 Bài 2 trang 35: Cho hàm số y = (-1)/2 x 2.

a) Trên đồ thị của hàm số này, xác định điểm D có hoành độ bằng 3. Tìm tung độ của điểm D bằng hai cách: bằng đồ thị; bằng cách tính y với x = 3. So sánh hai kết quả.

b) Trên đồ thị làm số này, xác định điểm có tung độ bằng -5. Có mấy điểm như thế ? Không làm tính, hãy ước lượng giá trị hoành độ của mỗi điểm.

a) Từ đồ thị, ta xác định được tung độ của điểm D là (-9)/2

Với x = 3 ta có: y = (-1)/2 x 2 = (-1)/2.3 2 = (-9)/2

Hai kết quả là như nhau.

b) Có 2 điểm có tung độ bằng -5

Giá trị của hoành độ là ≈ 3,2

Bài 2: Đồ thị hàm số y = ax2 (a ≠ 0)

Nhận xét về tính đối xứng của hai đồ thị đối với trục Ox.

Lời giải

+ Điền vào ô trống:

Vậy ta có bảng:

+ Vẽ đồ thị hàm số:

Bài 2: Đồ thị hàm số y = ax2 (a ≠ 0)

Bài 5 (trang 37 SGK Toán 9 tập 2): Cho ba hàm số:

a) Vẽ đồ thị của ba hàm số này trên cùng một mặt phẳng tọa độ.

b) Tìm ba điểm A, B, C có cùng hoành độ x = -1,5 theo thứ tự nằm trên ba đồ thị. Xác định tung độ tương ứng của chúng.

c) Tìm ba điểm A’ ; B’ ; C’ có cùng hoành độ x = 1,5 theo thứ tự nằm trên ba đồ thị. Kiểm tra tính đối xứng của A và A’ ; B và B’ ; C và C’.

d) Với mỗi hàm số trên, hãy tìm giá trị của x để hàm số đó có giá trị nhỏ nhất.

Lời giải

a) Bảng giá trị tương ứng của x và y:

Vẽ đồ thị:

Trên mặt phẳng lưới lấy các điểm (-2; 2); (-1; ½); (0; 0); (1; 1/2); (2; 2), nối chúng thành một đường cong ta được đồ thị hàm số y = ½.x 2.

Lấy các điểm (-2; 4); (-1; 1); (0; 0); (1; 1); (2; 4), nối chúng thành một đường cong ta được đồ thị hàm số y = x 2.

Lấy các điểm (-2; 8); (-1; 2); (0; 0); (1; 2); (2; 8), nối chúng thành một đường cong ta được đồ thị hàm số y = 2x 2.

b) Lấy các điểm A, B, C lần lượt nằm trên 3 đồ thị và có hoành độ bằng -1,5.

Khi đó tung độ điểm A bằng 9/8; tung độ điểm B bằng 9/4; tung độ điểm C bằng 9/2

c)

Lấy các điểm A’, B’, C’ lần lượt nằm trên 3 đồ thị và có hoành độ bằng 1,5.

Nhận xét: A và A’; B và B’; C và C’ đối xứng nhau qua trục Oy.

d) Hàm số có giá trị nhỏ nhất ⇔ y nhỏ nhất.

Dựa vào đồ thị nhận thấy cả ba hàm số đạt y nhỏ nhất tại điểm O(0; 0).

Vậy ba hàm số trên đều đạt giá trị nhỏ nhất tại x = 0.

Bài 2: Đồ thị hàm số y = ax2 (a ≠ 0) Luyện tập (trang 38-39)

Bài 6 (trang 38 SGK Toán 9 tập 2): Cho hàm số y = f(x) = x2.

a) Vẽ đồ thị của hàm số đó.

b) Tính các giá trị f(-8); f(-1,3); f(-0,75); f(1,5).

c) Dùng đồ thị để ước lượng các giá trị (0,5) 2; (-1,5) 2; (2,5) 2.

d) Dùng đồ thị để ước lượng vị trí các điểm trên trục hoành biểu diễn các số √3 ; √7.

Lời giải

a) Ta có bảng giá trị:

Vẽ đồ thị hàm số :

Trên hệ trục tọa độ xác định các điểm (-2 ; 4) ; (-1 ; 1) ; (0 ; 0) ; (1 ; 1) ; (2 ; 4). Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số y = x 2.

f(-0,75) = (-0,75) 2 = 0,5625

c)

Trên đồ thị hàm số, lấy các điểm M, N, P có hoành độ lần lượt bằng -1,5 ; 0,5 và 2,5.

Dựa vào đồ thị nhận thấy các điểm M, N, P có tọa độ là : M(-1,5 ; 2,25) ; N(0,5 ; 0,25) ; P(2,5 ; 6,25).

d)

⇒ Các điểm (√3 ; 3) và (√7 ; 7) thuộc đồ thị hàm số y = x 2.

Để xác định các điểm √3 ; √7 trên trục hoành, ta lấy trên đồ thị hàm số các điểm A, B có tung độ lần lượt là 3 và 7.

Chiếu vuông góc các điểm A, B trên trục hoành ta được các điểm √3 ; √7 trên đồ thị hàm số.

Bài 2: Đồ thị hàm số y = ax2 (a ≠ 0) Luyện tập (trang 38-39)

Bài 7 (trang 38 SGK Toán 9 tập 2): Trên mặt phẳng tọa độ (h.10), có một điểm M thuộc đồ thị của hàm số y = ax2.

a) Tìm hệ số a.

b) Điểm A(4; 4) có thuộc đồ thị không?

c) Hãy tìm thêm hai điểm nữa(không kể điểm O) để vẽ đồ thị.

Lời giải

a) Dựa trên hình 10 ta thấy điểm M có tọa độ (2; 1).

M thuộc đồ thị hàm số y = ax 2

Vậy (-2; 1) thuộc đồ thị hàm số.

Vậy (-4; 4) thuộc đồ thị hàm số.

* Vẽ đồ thị:

Bài 2: Đồ thị hàm số y = ax2 (a ≠ 0) Luyện tập (trang 38-39)

Bài 8 (trang 38 SGK Toán 9 tập 2): Biết rằng đường cong trong hình 11 là một parapol y = ax2.

a) Tìm hệ số a.

b) Tìm tung đệ của điểm thuộc parapol có hoành độ x = -3.

c) Tìm các điểm thuộc parapol có tung độ y = 8.

Lời giải

a) Ta có đồ thị hàm số y = ax 2 đi qua điểm (-2 ; 2)

Vậy điểm có hoành độ x = -3 thì tung độ bằng 4,5.

Vậy các điểm thuộc parabol có tung độ bằng 8 là (4; 8) và (-4; 8).

Bài 2: Đồ thị hàm số y = ax2 (a ≠ 0) Luyện tập (trang 38-39)

a) Vẽ đồ thị của các hàm số này trên cùng một mặt phẳng tọa độ.

b) Tìm tọa độ các giao điểm của hai đồ thị đó.

Lời giải

a)

– Vẽ đường thẳng y = -x + 6

Cho x = 0 ⇒ y = 6 được điểm (0, 6)

Cho x = 6 ⇒ y = 0 được điểm (6, 0)

⇒ Đường thẳng y = -x + 6 đi qua các điểm (6; 0) và (0; 6).

⇒ Parabol đi qua các điểm (3; 3); (-3; 3); (-6; 12); (6; 12); (0; 0).

b) Dựa vào đồ thị ta nhận thấy giao điểm của hai đồ thị là A(-6; 12) và (3; 3).

Bài 2: Đồ thị hàm số y = ax2 (a ≠ 0) Luyện tập (trang 38-39)

Bài 10 (trang 39 SGK Toán 9 tập 2): Cho hàm số y = -0,75x2. Qua đồ thị của hàm số đó, hãy cho biết khi x tăng từ -2 đến 4 thì giá trị nhỏ nhất và giá trị lớn nhất của y là bao nhiêu?

Lời giải

– Lập bảng giá trị:

– Vẽ đồ thị:

– Quan sát đồ thị hàm số y = -0,75x 2:

Khi x tăng từ -2 đến 4, y tăng từ -3 đến 0 rồi lại giảm xuống -12.

Vậy: Giá trị nhỏ nhất của y = -12 đạt được khi x = 4

Giá trị lớn nhất của y = 0 đạt được khi x = 0.