Top 3 # Xem Nhiều Nhất Lời Giải Hay Toán 7 Hình Học Mới Nhất 3/2023 # Top Like | Asianhubjobs.com

Tuyển Tập Các Lời Giải Hay Cho Các Bài Toán Hình Học Phẳng Khó

Tuyển tập các lời giải hay cho các bài toán hình học phẳng khó(Số 1)(Tháng 9/2016) Đôi điều về chuyên mục: Trong tuyển tập lớn này, tôi sẽ mỗi tháng đưa ra năm lời giải cho năm bài toán khác nhau mà tôi cho là hay. Sau một tháng nhận email phản hồi của các bạn(các lời giải khác mà các bạn nghĩ là hay hơn,mở rộng các bài toán,…), tôi sẽ biên tập lại chúng để viết chúng trong phần phản hồi bạn đọc ở số tiếp theo. Cuối mỗi tháng sẽ có list bài của tháng sau để các bạn tiện theo dõi. Bài toán 1(Nguyễn Văn Linh): Cho tam giác ABC nội tiếp đường tròn (O) có trực tâm H. P là một điểm thuộc cung BC không chứa A của (O)(P 6= B, C).P 0 đối xứng P qua BC. (OP P 0 ) cắt AP tại G. Chứng minh rằng trực tâm tam giác AGO nằm trên HP 0 .

Lời giải(Nguyễn Duy Khương): Gọi AH cắt (AGO) tại điểm J khác A. Thế thì: ∠JOG = ∠HAG = ∠GP P 0 (do AH//P P 0 )=180◦ − ∠GOP 0 do đó O, P 0 , J thẳng hàng. Lại có: ∠GJO = ∠P AO = ∠GP O = ∠GP 0 O do đó tam giác GJP 0 cân tại G. Lại có: ∠JGP 0 = ∠AOP = 2∠ACP . Lại có: ∠AHP 0 = ∠HP P 0 = ∠ACP (do 1

nếu gọi AH cắt lại (O) tại D thì HDP P 0 là hình thang cân nên dĩ nhiên ∠HP P 0 = ∠ACP ) do đó G là tâm (JHP 0 ). Ta gọi K là giao (JHP 0 ) cắt (AGO) tại điểm K khác J. Lại có: ∠GKO = ∠OAG = ∠GP O = ∠GP 0 O do đó ∠OP 0 K = ∠OKP 0 nên OK = OP 0 vậy khi đó dĩ nhiên K đối xứng P 0 qua GO từ đó GK = GH = GP 0 mà ∠GHJ = ∠GJH = 180◦ − ∠AJG = ∠AOG = ∠AKG vậy thì K cũng đối xứng H qua AG. Vậy theo định lí về đường thẳng Steiner thì trực tâm tam giác AGO nằm trên HP 0 (đpcm). Nhận xét: Ở lời giải trên tác giả đã có một lời giải khác với lời giải gốc của người ra đề. Điểm thú vị của lời giải trên chính là việc không cần nhất thiết chỉ ra trực tâm của tam giác đó. Bài toán 2(Kiểm tra trường hè Titan tháng 8/2016): Cho tam giác ABC nội tiếp đường tròn (O) có: H là trực tâm và AM là trung tuyến tam giác ABC. AM cắt lại (O) tại điểm N . Ba đường thẳng: qua H vuông góc AN, BC, KN cắt nhau tạo thành tam giác XY Z. Chứng minh rằng: (XY Z) tiếp xúc (O).

Lời giải(Nguyễn Duy Khương): Gọi tia M H cắt (O) tại điểm J, gọi AD là đường cao của tam giác ABC. Hiển nhiên ta có: AJ, HP, M D là các đường cao của tam giác AHM suy ra AJ, HP, BC đồng quy tại điểm Y . Hay là A, J, Y thẳng hàng. Ta đi chứng minh rằng J thuộc (XY Z). Ta có: HDY J nội tiếp do đó XY JZ nội tiếp khi và chỉ khi:

2

(JX, KX) ≡ (AH, JH)(modπ) hay là tứ giác JHKX nội tiếp. Lại có: (JK, XK) ≡ (JA, N A) ≡ (JD, Y D) ≡ (JH, Y H)(modπ) vậy ta có: JHKX nội tiếp hay là J thuộc (XY Z). Vậy tức là J thuộc (XY Z) và (O). Vì J thuộc (O) và (XY Z) mà A, J, Y thẳng hàng nên khi gọi Y G, AL là các đường kính (XY Z) và (O) thì GJL ⊥ Y A, ta có: ∠JGY = ∠JXY = ∠JKA = ∠JLA do đó GY kAL vậy hiển nhiên 4GJY ∼ 4AJL do I, O lần lượt là trung điểm GY và AL nên ∠IJY = ∠OJA hay là thu được I, J, O thẳng hàng hay (XY Z) tiếp xúc (O)(đpcm). Nhận xét: Bài toán này hay nhưng không quá khó rất phù hợp để lấy làm bài thi trong 1 đề kiểm tra định kì. Ở bài toán trên ta thấy được tiếp điểm J sinh ra cực kì hay và hợp lí. Cách giải trên tuy dài hơn lời giải gốc xong lại thể hiện tư duy chứng minh tiếp xúc rất hay đó là sử dụng vị tự. Độc giả có thể tham khảo lời giải gốc và của bài toán mở rộng ở đây [1]. Bài toán 3(Trịnh Huy Vũ): Cho tam giác ABC có đường cao AH. Gọi X, Y lần lượt là chân đường vuông góc hạ từ H xuống AC, AB. Z là giao điểm của BX và CY . Chứng minh rằng (XY Z) tiếp xúc (A; AH).

Lời giải(Nguyễn Duy Khương): Quay trở lại bài toán: Gọi XY cắt BC tại điểm L. Gọi LA cắt (ABC) tại điểm P . Lấy J đối xứng H qua LA. Ta có: tứ giác AY HX nội tiếp nên ∠Y XH = ∠HAB = ∠Y HL do đó ta có: LH 2 = chúng tôi = chúng tôi = LP .LA do đó P thuộc (AH). Do J đối xứng H qua LA nên theo phép vị tự tỉ số 2 3

tâm H thì J thuộc (A; AH). Lại có: J đối xứng H qua AL nên ∠LJA = 90◦ suy ra LJ là tiếp tuyến đến (A; AH). Gọi T là tâm (BCXY ) theo định lí Bocard thì Z là trực tâm tam giác ALT . Gọi T Z cắt AL tại điểm P 0 . Gọi AT cắt LZ tại Q thì LP 0 .LA = chúng tôi = LM .LN (hệ thức M aclaurin)= chúng tôi = chúng tôi suy ra P 0 thuộc (O) do đó P trùng P 0 . Vậy T, Z, P, H thẳng hàng. Do đó P, J, Z, H thẳng hàng. Ta chỉ cần chứng minh J thuộc (XY Z) khi đó hiển nhiên LJ là tiếp tuyến tới (XY Z). Tứ giác LXZY nội tiếp khi và chỉ khi ∠ZJY = ∠ZXY = ∠ZCH hay tứ giác JCHY nội tiếp hay Z có cùng phương tích tới 2 đường tròn (BCXY ) và (A; AH). Gọi (A; AH) cắt (BCXY ) tại các điểm M, N . Ta có: AH 2 = AM 2 = AN 2 = chúng tôi = AY .AB do đó AM, AN lần lượt là tiếp tuyến đến (BCXY ). Do đó quen thuộc là ta thấy rằng: BX, CY, M N đồng quy tại 1 điểm chính là Z(Gọi M N cắt Y B, CX tại các điểm E, F sử dụng hàng điều hoà cơ bản ta có: (AEY B) = (AF XC) = −1 do đó BX, CY, M N đồng quy). Vậy hiển nhiên: phương tích từ Z tới (BCXY )=phương tích từ Z tới (A; AH) do đó tứ giác JCHY nội tiếp và do đó JXY Z nội tiếp vậy mà dễ thấy LJ là tiếp tuyến tới (XY Z) do đó (XY Z) tiếp xúc (A; AH) tại J(đpcm). Nhận xét: Bài toán này tiếp tục là một lời giải mới được tác giả đề xuất khác với chứng minh gốc. Điểm thú vị trong chứng minh mới là việc chứng minh sử dụng nhuần nhuyễn các công cụ tỉ số kép và phương tích để thu được kết luận quan trọng là J thuộc (XY Z). Lời giải gốc của tác giả Nguyễn Văn Linh sử dụng phép nghịch đảo . Bài toán 4(Thành Phố Hồ Chí Minh TST 2011): Cho tam giác ABC nhọn. Lấy D là 1 điểm bất kì trên đoạn BC không trùng B, C. Lấy E là 1 điểm trên đoạn AD (E không trùng A, D). Gọi (DEB) cắt AB tại F khác B và gọi (DEC) cắt AC tại G khác C. EC cắt GD tại I và F D cắt BE tại H. Gọi J là tâm đường tròn ngoại tiếp tam giác EBC. Chứng minh rằng: AJ vuông góc HI.

4

6

Lời giải(Nguyễn Duy Khương): Gọi H là trực tâm tam giác ABC và AH cắt BC tại D thế thì do BV 2 = BS 2 = chúng tôi = BD.BC(do BC tiếp xúc (AES) nên BV 2 = BS 2 = chúng tôi do đó (V S, DC) = −1 và do đó ta có DV .DS = DB.DC(theo hệ thức M aclaurin) do đó H là trực tâm tam giác AV S. Ta gọi SE cắt (AEF ) tại R, gọi AS cắt (AEF ) tại điểm thứ hai Y . Điều phải chứng minh tương đương R thuộc V F . Ta có: chúng tôi = SY .SA = chúng tôi (do tứ giác AY DV nội tiếp) suy ra REDV là một tứ giác nội tiếp. Chú ý rằng tứ giác HEBD nội tiếp nên ta có: (V R, ER) ≡ −(ED, BD)(modπ) lại có REHF nội tiếp do đó (ER, F R) ≡ −(EH, F H)(modπ) từ đó ta có: (V R, ER) ≡ (F R, ER)(modπ) hay là V, R, F thẳng hàng. Nhận xét: Bài toán lần đầu tiên xuất hiện trên group Bài toán hay-Lời giải đẹp[3]. Lời giải trên được tác giả đề nghị không phải là ngắn gọn nhất. Có thể kể đến ý tưởng biến đổi tỉ số phương tích của tác giả Mẫn Bá Tuấn-học sinh chuyên Toán THPT chuyên ĐHSP Hà Nội. Ở đây xin nêu cách này bởi sự khai thác triệt để giả thiết tiếp xúc trong đề bài.

Các bài toán đề nghị tháng sau :

7

Bài toán 6(Hà Nội TST 2015-2016): Cho đường tròn đường kính AB. Lấy điểm C trên nửa đường tròn này sao cho 90◦ < ∠AOC < 180◦ . Lấy K là 1 điểm thay đổi trên đoạn OC. Vẽ các tiếp tuyến AD, AE đến đường tròn (K; KC). Chứng minh rằng DE, AC, BK đồng quy tại 1 điểm. Bài toán 7(Trần Quang Hùng-T12/466-THTT): Cho tam giác ABC nhọn không cân nội tiếp đường tròn (O). Lấy P là 1 điểm thuộc tam giác ABC sao cho AP vuông góc BC. Kẻ P E, P F lần lượt vuông góc AB, AC( E, F thuộc AB và AC). Đường tròn ngoại tiếp tam giác AEF cắt lại (O) tại G. Chứng minh rằng GP, BE, CF đồng quy tại 1 điểm. Bài toán 8(Trích HNEU TST 2014-2015): Cho tam giác ABC có các đường cao AD, BE, CF . Các đường tròn đường kính AB và AC cắt các tia DF và DE tại các điểm Q và P . Gọi N là tâm ngoại tiếp tam giác DEF . Chứng minh rằng: AN ⊥ P Q. Bài toán 9(Đề thi chọn HSG khối 10,chuyên ĐHSP,2015-2016):Cho tứ giác ABCD nội tiếp đường tròn (O). M, N lần lượt là trung điểm AB và CD. Giả sử AD cắt BC tại E và 2 đường chéo cắt nhau tại điểm F . EF cắt AB và CD lần lượt tại các điểm P và Q. a) Chứng minh rằng M, N, P, Q nội tiếp đường tròn tâm T . b) Chứng minh rằng OT, N P, M Q đồng quy. Bài toán 10(Nguyễn Duy Khương): Cho tam giác ABC sao cho AB + AC = 2BC. Tam giác nội tiếp trong đường tròn (O) và ngoại tiếp đường tròn (I). (I) tiếp xúc BC, CA, AB tại D, E, F . AI cắt lại đường tròn (O) tại J khác A. Một đường thẳng d qua A song song với BC cắt EF tại M .Chứng minh rằng:∠JDM = 90◦ .

8

1

Lời giải 1(Nguyễn Duy Khương): Gọi BK cắt lại (O) tại điểm thứ hai J. Gọi JA cắt DE tại điểm N . Do ∠KJA = ∠KDA = 90◦ do đó tứ giác JADE nội tiếp. Do (O) tiếp xúc (K) nên áp dụng tính chất trục đẳng phương thì tiếp tuyến chung tại C của (O), (K),DE và JA đồng quy tại 1 điểm N . Gọi DE cắt BK tại điểm M . Kẻ tiếp tuyến thứ hai N S tới (K) thế thì do N C đã là tiếp tuyến tới (K) nên ta có: DSCE là 1 tứ giác điều hoà do đó hiển nhiên là ta có: A, S, C thẳng hàng. Gọi M là giao điểm của BK và DE. Gọi I là trung điểm DE. Do M là trực tâm tam giác AN K nên: M N.M I = M J.M K = M D.M E(do A, J, K, D, E đồng viên). Vậy ta thu được: (N M, DE) = −1(theo hệ thức M aclaurin) suy ra: C(N M, DE) = −1 mà ở trên ta đã chỉ ra được: C(N S, DE) = −1. Do đó: S, C, M thẳng hàng. Vậy AC, BK, DE đồng quy tại điểm M (đpcm).

2

Một Số Bài Toán Hình Học Lớp 7 Cực Hay Có Đáp Án

Những bài tính góc của học sinh lớp 7 (có đáp án) hay cực.Bài 1: Tính các góc tam giác ABC cao AH, trung AD chia góc BAC thành 3góc nhau. Bài 2: Cho ABC có hat(ACB)=300. cao AH BC. D là trung AB. Tính góc BCD. Bài 3: Cho DeltaABC có góc C = 300 và BC = 2AB . Tính các góc A,B. Bài 4: Cho tam giác ABC ở ngoài tam giác các tam giác ABE và ACF. H là tâm ABE. I là trung BC. Tính các góc FIH. Bài 5: Cho tam giác ABC, ở ngoài ta các tam giác ACB1 và ABC1. K và L, là trung AC1 và CB1, M BC sao cho BM = 3MC . Tính các góc tam giác KLM. Bài 6: Cho tam giác ABC vuông cân A. M ý trên AC, tia Ax vuông góc BM. H là giao Ax BC và K là tia tia HC sao cho HK = HC. tia Ky vuông góc BM. I là giao Ky AB. Tính góc AIM. Bài 7: Cho Delta ABC có góc B=450; Góc C=1200. Trên tia tia CB D sao cho CD = 2CB. Tính hat(ADB Bài 8: Cho tam giác ABC , có góc A = 90 độ. AC = 3AB. Trên AC 1 D sao cho DA = 2 DC. Tính hat(ADB)+hat(ACD) Bài 9: Cho tam giác ABC, phía ngoài tam giác các tam giác vuông cân A là tam giác ADB và tam giác ACE. P, Q, M là trung BD, CE và BC. Tính các góc tam giác PQM. Bài 10: Cho tam giác ABC, các cao A và B, các không các . Hãy tính các góc tam giác ABC. Bài 11: Cho tam giác ABC cao AH, phân giác BD và góc AHD = 45 độ. Tính góc ADB. Bài 12: Cho tam giác ABC vuông ở A, có góc B = . Trên tia tia AB H sao cho BH = 2 AC. Tính góc BHC. Bài 13: Cho tam giác ABC cân A. Có góc A = 400. Trên BC không A tia Bx sao cho góc CBx = 100. Trên Bx E sao cho BE = BA. Tính góc BEC. Bài 14: Cho tam giác ABC vuông cân ở A. E trong tam giác sao cho góc AEC góc ECA = 15 độ. Tính góc AEB. Bài 15: Cho tam giác cân ABC có góc ở A 20 độ. Các M,N theo trên AB. AC sao cho góc BCM = 50 độ, góc CBN = 60 độ.

Đáp án:Bài 1: DK vuông góc AC Suy ra DK = HD = 1/2DB = 1/2 DC Suy ra góc C 30 độ. suy ra góc A = 90 độ và góc B 60 độ. Bài 2: AH =1/2BC (gt) mà AH =1/2AC (do góc C = 30 độ) Suy ra AC = BC nên DC là phân giác góc C. góc BCD 15 độ. Bài 3: BH vuông góc AC. minh H trùng A là xong. (còn )

Các Bài Toán Hình Học Lớp 9 Có Lời Giải

, Working at Trường Đại học Công nghệ Thông tin và Truyền thông – Đại học Thái Nguyên

Published on

Cac bai-toan-hinh-hoc-on-thi-vao-lop-10

4. N y x O K F E M BA 3. Rõ ràng đây là câu hỏi khó đối với một số em, kể cả khi hiểu rồi vẫn không biết giải như thế nào , có nhiều em may mắn hơn vẽ ngẫu nhiên lại rơi đúng vào hình 3 ở trên từ đó nghĩ ngay được vị trí điểm C trên nửa đường tròn. Khi gặp loại toán này đòi hỏi phải tư duy cao hơn. Thông thường nghĩ nếu có kết quả của bài toán thì sẽ xảy ra điều gì ? Kết hợp với các giả thiết và các kết quả từ các câu trên ta tìm được lời giải của bài toán. Với bài tập trên phát hiện M là trực tâm của tam giác không phải là khó, tuy nhiên cần kết hợp với bài tập 13 trang 72 sách Toán 9T2 và giả thiết M là điểm chính giữa cung AC ta tìm được vị trí của C ngay. Với cách trình bày dưới mệnh đề “khi và chỉ khi” kết hợp với suy luận cho ta lời giải chặt chẽ hơn. Em vẫn có thể viết lời giải cách khác bằng cách đưa ra nhận định trước rồi chứng minh với nhận định đó thì có kết quả , tuy nhiên phải trình bày phần đảo: Điểm C nằm trên nửa đường tròn mà thì AD là tiếp tuyến. Chứng minh nhận định đó xong ta lại trình bày phần đảo: AD là tiếp tuyến thì . Từ đó kết luận. 4. Phát hiện diện tích phần tam giác ADC ở ngoài đường tròn (O) chính là hiệu của diện tích tứ giác AOCD và diện tích hình quạt AOC thì bài toán dễ tính hơn so với cách tính tam giác ADC trừ cho diện tích viên phân cung AC. Bài 3 Cho nửa đường tròn (O) đường kính AB = a. Gọi Ax, By là các tia vuông góc với AB ( Ax, By thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (O) (M khác A và B) kẻ tiếp tuyến với nửa đường tròn (O); nó cắt Ax, By lần lượt ở E và F. 1. Chứng minh: 2. Chứng minh tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. 3. Gọi K là giao điểm của AF và BE, chứng minh . 4. Khi MB = .MA, tính diện tích tam giác KAB theo a. BÀI GIẢI CHI TIẾT 1. Chứng minh: . EA, EM là hai tiếp tuyến của đường tròn (O) cắt nhau ở E nên OE là phân giác của . Tương tự: OF là phân giác của . Mà và kề bù nên: (đpcm) hình 4 2. Chứng minh: Tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. ” 0 60BC =” 0 60BC = · 0 EOF 90= MK AB⊥ 3 · 0 EOF 90= ·AOM ·BOM ·AOM·BOM· 0 90EOF =

5. Ta có: (tính chất tiếp tuyến) Tứ giác AEMO có nên nội tiếp được trong một đường tròn. Tam giác AMB và tam giác EOF có:, (cùng chắn cung MO của đường tròn ngoại tiếp tứ giác AEMO. Vậy Tam giác AMB và tam giác EOF đồng dạng (g.g). 3. Gọi K là giao điểm của AF và BE, chứng minh . Tam giác AEK có AE

6. x H Q I N M O C BA K x H Q I N M O C BA Nếu chú ý MK là đường thẳng chứa đường cao của tam giác AMB do câu 3 và tam giác AKB và AMB có chung đáy AB thì các em sẽ nghĩ ngay đến định lí: Nếu hai tam giác có chung đáy thì tỉ số diện tích hai tam giác bằng tỉ số hai đường cao tương ứng, bài toán qui về tính diện tích tam giác AMB không phải là khó phải không các em? Bài 4 Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC (C là tiếp điểm). Hạ CH vuông góc với AB, đường thẳng MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Gọi giao điểm của MO và AC là I. Chứng minh rằng: a) Tứ giác AMQI nội tiếp. b) . c) CN = NH. (Trích đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của sở GD&ĐT Tỉnh Bắc Ninh) BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác AMQI nội tiếp: Ta có: MA = MC (tính chất hai tếp tuyến cắt nhau) OA = OC (bán kính đường tròn (O)) Do đó: MO AC . (góc nội tiếp chắn nửa đường tròn (O)) . Hai đỉnh I và Q cùng nhìn AM dưới Hình 5 một góc vuông nên tứ giác AMQI nội tiếp được trong một đường tròn. b) Chứng minh:. Tứ giác AMQI nội tiếp nên Hình 6 (cùng phụ ) (2). có OA = OC nên cân ở O. (3). Từ (1), (2) và (3) suy ra . c) Chứng minh CN = NH. Gọi K là giao điểm của BC và tia Ax. Ta có: (góc nội tiếp chắn nửa đường tròn(O)). AC BK , AC OM OM

8. · · · · CDB CAB CAB CFA  =  = x F E D C B O A Từ (1) và (2) suy ra: chúng tôi = chúng tôi c) Chứng minh tứ giác CDEF nội tiếp: Ta có: (hai góc nội tiếp cùng chắn cung BC) ( cùng phụ ) Do đó tứ giác CDEF nội tiếp. Cách khác và có: chung và (suy từ chúng tôi = chúng tôi nên chúng đồng dạng (c.g.c). Suy ra: . Vậy tứ giác CDEF là tứ giác nội tiếp. d) Xác định số đo của góc ABC để tứ giác AOCD là hình thoi: Ta có: (do BD là phân giác ) . Tứ giác AOCD là hình thoi OA = AD = DC = OC AD = DC = R Vậy thì tứ giác AOCD là hình thoi. Tính diện tích hình thoi AOCD theo R: . Sthoi AOCD = (đvdt). Hình 8 Lời bàn 1. Với câu 1, từ gt BD là phân giác góc ABC kết hợp với tam giác cân ta nghĩ ngay đến cần chứng minh hai góc so le trong và bằng nhau. 2. Việc chú ý đến các góc nội tiếp chắn nửa đường tròn kết hợp với tam giác AEB, FAB vuông do Ax là tiếp tuyến gợi ý ngay đến hệ thức lượng trong tam giác vuông quen thuộc. Tuy nhiên vẫn có thể chứng minh hai tam giác BDC và BFE đồng dạng trước rồi suy ra chúng tôi = chúng tôi Với cách thực hiện này có ưu việc hơn là giải luôn được câu 3. Các em thử thực hiện xem sao? 3. Khi giải được câu 2 thì câu 3 có thể sử dụng câu 2 , hoặc có thể chứng minh như bài giải. 4. Câu 4 với đề yêu cầu xác định số đo của góc ABC để tứ giác AOCD trở thành hình thoi không phải là khó. Từ việc suy luận AD = CD = R nghĩ ngay đến cung AC bằng 1200 từ đó suy ra số đo góc ABC ·FAC· ·CDB CFA⇒ = ∆DBC∆FBE∆ µBBD BC BF BE = · ·EFBCDB = · ·ABD CBD=·ABC” “AD CD⇒ = ⇔ ⇔” ” 0 60AD DC⇔ = =” 0 120AC⇔ =· 0 60ABC⇔ = · 0 60ABC = ” 0 120 3AC AC R= ⇒ = 2 1 1 3 . . . 3 2 2 2 R OD AC R R= = ·ODB·OBD ” 0 120 3AC AC R= ⇒ =

9. H N F E CB A bằng 600 . Tính diện tích hình thoi chỉ cần nhớ công thức, nhớ các kiến thức đặc biệt mà trong quá trình ôn tập thầy cô giáo bổ sung như ,…….. các em sẽ tính được dễ dàng. Bài 6 Cho tam giác ABC có ba góc nhọn. Đường tròn đường kính BC cắt cạnh AB, AC lần lượt tại E và F ; BF cắt EC tại H. Tia AH cắt đường thẳng BC tại N. a) Chứng minh tứ giác HFCN nội tiếp. b) Chứng minh FB là phân giác của . c) Giả sử AH = BC . Tính số đo góc của ∆ABC. BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác HFCN nội tiếp: Ta có : (góc nội tiếp chắn nửa đường tròn đường kính BC) Tứ giác HFCN có nên nội tiếp được trong đường tròn đường kính HC) (đpcm). b) Chứng minh FB là tia phân giác của góc EFN: Ta có (hai góc nội tiếp cùng chắn của đường tròn đường kính BC). (hai góc nội tiếp cùng chắn của đường tròn đường kính HC). Suy ra: . Vậy FB là tia phân giác của góc EFN (đpcm) c) Giả sử AH = BC. Tính số đo góc BAC của tam giác ABC: FAH và FBC có: , AH = BC (gt), (cùng phụ ). Vậy FAH = FBC (cạnh huyền- góc nhọn). Suy ra: FA = FB. AFB vuông tại F; FA = FB nên vuông cân. Do đó . Bài 7 (Các em tự giải) Cho tam giác ABC nhọn, các đường cao BD và CE cát nhau tại H. a) Chứng minh tứ giác BCDE nội tiếp. b) Chứng minh AD. AC = AE. AB. c) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh OA DE. ·EFN ·BAC · · 0 90BFC BEC= = · · 0 180HFC HNC+ = · ·EFB ECB=”BE · ·ECB BFN=¼HN · ·EFB BFN= ∆∆· · 0 AFH 90BFC= =· ·FAH FBC=·ACB∆∆ ∆· 0 45BAC = ⊥

10. =

11. O P K M H A C B Bài 9 Cho tam giác ABC ( ) nội tiếp trong nửa đường tròn tâm O đường kính AB. Dựng tiếp tuyến với đường tròn (O) tại C và gọi H là chân đường vuông góc kẻ từ A đến tiếp tuyến đó. AH cắt đường tròn (O) tại M (M ≠ A). Đường vuông góc với AC kẻ từ M cắt AC tại K và AB tại P. a) Chứng minh tứ giác MKCH nội tiếp. b) Chứng minh ∆MAP cân. c) Tìm điều kiện của ∆ABC để ba điểm M, K, O thẳng hàng. BÀI GIẢI a) Chứng minh tứ giác MKCH nội tiếp: Ta có : (gt), (gt) Tứ giác MKCH có tổng hai góc đối nhau bằng 1800 nên nội tiếp được trong một đường tròn. b) Chứng minh tam giác MAP cân: AH

12. / /

13. H / / = = P O K I N M C BA a) Chứng minh tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó: Ta có (góc nội tiếp chắn nửa đường tròn (O)). Do đó: Tứ giác ICPN có nên nội tiếp được trong một đường tròn. Tâm K của đường tròn ngoại tiếp tứ giác ICPN là trung điểm của đoạn thẳng IP. b) Chứng minh KN là tiếp tuyến của đường tròn (O). Tam giác INP vuông tại N, K là trung điểm IP nên . Vậy tam giác IKN cân ở K . Do đó (1). Mặt khác (hai góc nội tiếp cùng chắn cung PN đường tròn (K)) (2) N là trung điểm cung CB nên . Vậy NCB cân tại N. Do đó : (3). Từ (1), (2) và (3) suy ra , hai góc này ở vị trí đồng vị nên KN

14. / /

15. 60° O J IN M B A a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). b) Kẻ các đường kính MOI của đường tròn (O; R) và MBJ của đường tròn (B; BM). Chứng minh N, I và J thẳng hàng và JI . JN = 6R2 c) Tính phần diện tích của hình tròn (B; BM) nằm bên ngoài đường tròn (O; R) theo R. BÀI GIẢI a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). Ta có . (góc nội tiếp chắn nửa đường tròn(O)). Điểm M và N thuộc (B;BM); AM MB và AN NB. Nên AM; AN là các tiếp tuyến của (B; BM). b) Chứng minh N; I; J thẳng hàng và JI .JN = 6R2 . (các góc nội tiếp chắn nửa đường tròn tâm O và tâm B). Nên IN MN và JN MN . Vậy ba điểm N; I và J thẳng hàng. Tam giác MJI có BO là đường trung bình nên IJ = 2BO = 2R. Tam giác AMO cân ở O (vì OM = OA), nên tam giác MAO đều. AB MN tại H (tính chất dây chung của hai đường tròn (O) và (B) cắt nhau). Nên OH = . Vậy HB = HO + OB = . Vậy JI . JN = 2R . 3R = 6R2 c) Tính diện tích phần hình tròn (B; BM) nằm ngoài đường tròn (O; R) theo R: Gọi S là diện tích phần hình tròn nằm (B; BM) nằm bên ngoài hình tròn (O; R). S1 là diện tích hình tròn tâm (B; BM). S2 là diện tích hình quạt MBN. S3 ; S4 là diện tích hai viên phân cung MB và NB của đường tròn (O; R). Ta có : S = S1 – (S2 + S3 + S4). Tính S1: . Vậy: S1 = . Tính S2: S2 = = Tính S3: S3 = Squạt MOB – SMOB. Squạt MOB = . OA = OB SMOB = SAMB = = = Vậy S3 = = S4 (do tính chất đối xứng). Từ đó S = S1 – (S2 + 2S3) · · 0 90AMB ANB= = ⊥ ⊥ · · 0 90MNI MNJ= =⊥⊥ · 0 60MAO = ⊥ 1 1 2 2 OA R= 3 2 2 R R R+ = 3 2. 3 2 R NJ R⇒ = = · “0 0 60 120MAB MB= ⇒ =3MB R⇒ = ( ) 2 2 3 3R Rπ π= · 0 60MBN = ⇒ ( ) 2 0 0 3 60 360 Rπ 2 2 Rπ · 0 120MOB = ⇒2 0 2 0 .120 360 3 R Rπ π = ⇒1 2 1 1 . . . 2 2 AM MB 1 . 3 4 R R 2 3 4 R 2 3 Rπ 2 3 4 R −

16. _

17. E I K H ON M D C BA S1 là diện tích nửa hình tròn đường kính MB. S2 là diện tích viên phân MDB. Ta có S = S1 – S2 . Tính S1: . Vậy S1 = . Tính S2: S2 = SquạtMOB – SMOB = = . S = ( ) = . Bài 15 Cho đường tròn (O) đường kính AB bằng 6cm . Gọi H làđiểm nằm giữa A và B sao cho AH = 1cm. Qua H vẽ đường thẳng vuông góc với AB , đường thẳng này cắt đường tròn (O) tại C và D. Hai đường thẳng BC và DA cắt nhau tại M. Từ M hạ đường vuông góc MN với đường thẳng AB ( N thuộc thẳng AB). a) Chứng minh MNAC là tứ giác nội tiếp. b) Tính độ dài đoạn thẳng CH và tính tg. c) Chứng minh NC là tiếp tuyến của đường tròn (O). d) Tiếp tuyến tại A của đường tròn (O) cắt NC ở E. Chứng minh đường thẳng EB đi qua trung điểm của đoạn thẳng CH. BÀI GIẢI a) Chứng minh tứ giác MNAC nội tiếp: (góc nội tiếp chắn nửa đường tròn) Suy ra . Tứ giác MNAC có nên nội tiếp được trong một đường tròn. b) Tính CH và tg ABC. AB = 6 (cm) ; AH = 1 (cm) HB = 5 (cm). Tam giác ACB vuông ở C, CH AB CH2 = AH . BH = 1 . 5 = 5 (cm). Do đó tg ABC = . c) Chứng minh NC là tiếp tuyến của đường tròn (O): Ta có (hai góc nội tiếp cùng chắn cung AN của đường tròn ngoại tiếp tứ giác MNAC). (so le trong của MN

18. / /? _ αK E H M O D C B A Gọi K là giao điểm của AE và BC; I là giao điểm của CH và EB. KE//CD (cùngvới AB) (đồng vị). (cùng chắn cung BD). (đối đỉnh) và (cùng chắn ). Suy ra: cân ở E. Do đó EK = EC. Mà EC = EA (tính chất hai tiếp tuyến cắt nhau) nên EK = EA. có CI

Lời Giải Hay Toán 7 Sbt Toán 7 Tập 2, Giải Bài Tập, Sách Bài Tập (Sbt) Toán 7

Giải sách bài tập Toán 7 trang 7

Giải sách bài tập Toán 7 trang 56

Giải vở bài tập Toán 7 trang 89 tập 1 câu 21, 22, 23

Giải bài tập Toán 6 trang 89 tập 1 câu 21, 22, 23

Bài tập Toán 7 trang 89 tập 1 câu 21

Xem hình bên rồi điền vào chỗ trồng (…) trong các câu sau:

a) ∠IPO và ∠POR là một cặp góc …

b) ∠OPI và ∠TNO là một cặp góc …

c) ∠PIO và ∠NTO là một cặp góc …

d) ∠OPR và ∠POI là một …

Bài tập Toán 7 trang 89 tập 1 câu 22

a) Vẽ lại hình 15.

Đang xem: Lời giải hay toán 7 sbt

b) Ghi tiếp số đo ứng với các góc còn lại.

c) Cặp ∠ A1, B2 và cặp ∠ A4,B3 được gọi là hai cặp ∠ trong cùng phía.

Tính: ∠A1 + ∠B2 ; ∠A4 + ∠B3

Bài tập Toán 7 trang 89 tập 1 câu 23

Hãy nêu hình ảnh của các cặp ∠ so le trong và các cặp góc đồng vị trong thực tế.

Giải bài tập toán lớp 7 tập 1 trang 89 câu 21,22,23

Giải sách bài tập Toán 7 trang 89 tập 1 câu 21

Điền vào chỗ trống như sau:

a)so le trong.

b) đồng vị.

c) đồng vị.

d) cặp ∠ so le trong.

Giải sách bài tập Toán 7 trang 89 tập 1 câu 22

a) Vẽ lại hình.

b) Ghi số đo ứng với các ∠ còn lại ta được hình bên:

Giải sách bài tập Toán 7 trang 89 tập 1 câu 23

Cái thang có các cặp ∠ so le trong…v..v.v

Cách sử dụng sách giải Toán 7 học kỳ 1 hiệu quả cho con

Cách sử dụng sách giải Toán 7 học kỳ 1 hiệu quả cho con

+ Dành thời gian hướng dẫn con cách tham khảo sách như thế nào chứ không phải mua sách về và để con tự đọc. Nếu để con tự học với sách tham khảo rất dễ phản tác dụng.

+ Sách tham khảo rất đa dạng, có loại chỉ gợi ý, có loại giải chi tiết, có sách kết hợp cả hai. Dù là sách gợi ý hay sách giải thì mỗi loại đều có giá trị riêng. Phụ huynh có vai trò giám sát định hướng cho con trong trường hợp nào thì dùng bài gợi ý, trường hợp nào thì đọc bài giải.

Ví dụ: Trước khi cho con đọc bài văn mẫu thì nên để con đọc bài gợi ý, tự làm bài; sau đó đọc văn mẫu để bổ sung thêm những ý thiếu hụt và học cách diễn đạt, cách sử dụng câu, từ.

+ Trong môn Văn nếu quá phụ thuộc vào các cuốn giải văn mẫu, đọc để thuộc lòng và vận dụng máy móc vào các bài tập làm văn thì rất nguy hiểm.

Phụ huynh chỉ nên mua những cuốn sách gợi ý cách làm bài chứ không nên mua sách văn mẫu, vì nó dễ khiến học sinh bắt chước, làm triệt tiêu đi tư duy sáng tạo và mất dần cảm xúc. Chỉ nên cho học sinh đọc các bài văn mẫu để học hỏi chứ tuyệt đối không khuyến khích con sử dụng cho bài văn của mình.

+ Trong môn Toán nếu con có lực học khá, giỏi thì nên mua sách giải sẵn các bài toán từ sách giáo khoa hoặc toán nâng cao để con tự đọc, tìm hiểu. Sau đó nói con trình bày lại. Quan trọng nhất là phải hiểu chứ không phải thuộc.

Nếu học sinh trung bình, yếu thì phải có người giảng giải, kèm cặp thêm. Những sách trình bày nhiều cách giải cho một bài toán thì chỉ phù hợp với học sinh khá giỏi.