Top 12 # Xem Nhiều Nhất Lời Giải Hay Toán 7 Tập 1 Hình Học Sgk Mới Nhất 4/2023 # Top Like | Asianhubjobs.com

Một Số Bài Tập Toán Hình Học 7 Ôn Tập Học Kì 1 Có Lời Giải

Sau khi xem xong các bài tập có lời giải, các em hãy tự làm bài tập ngay bên dưới để rèn luyện khả năng làm bài của mình. BÀI 1 :

Cho tam giác ABC. M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho BM = MD.

2.Chứng minh : AB

3.Trên DC kéo dài lấy điểm N sao cho CD =CN (C ≠ N) chứng minh : BN

MA = MC (gt)

MB = MD (gt)

(đối đinh)

Ta có :

(góc tương ứng của ?ABM = ?CDM)

Mà : ở vị trí so le trong

Nên : AB

Mà : CD = CN (gt)

AB = CN (cmt)

BC cạnh chung.

(so le trong)

Mà : ở vị trí so le trong.

Nên : BN

Cho tam giác ABC có AB = AC, trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho AM = AN. Gọi H là trung điểm của BC.

Chứng minh : ?ABH = ?ACH.

Gọi E là giao điểm của AH và NM. Chứng minh : ?AME = ?ANE

Chứng minh : MM

AB = AC (gt)

HB = HC (gt)

AH cạnh chung.

Xét ?AME và ?ANE, ta có :

AM =AN (gt)

(cmt)

AE cạnh chung

3. MM

Ta có : ?ABH = ?ACH (cmt)

Mà : (hai góc kề bù)

Hay BC AH

Cmtt, ta được : MN AE hay MN AH

Cho tam giác ABC vuông tại A. tia phân giác của góc ABC cắt AC tại D. lấy E trên cạnh BC sao cho BE = AB.

a) Chứng minh : ? ABD = ? EBD.

b) Tia ED cắt BA tại M. chứng minh : EC = AM

c) Nối AE. Chứng minh : góc AEC = góc EAM.

Xét ?ABD và ?EBD, ta có :

AB =BE (gt)

(BD là tia phân giác góc B)

BD cạnh chung

Ta có : ? ABD = ? EBD (cmt)

Suy ra : DA = DE và

Xét ?ADM và ?EDC, ta có :

DA = DE (cmt)

(cmt)

(đối đỉnh)

3.

Ta có : ?ADM = ?EDC (cmt)

Suy ra : AD = DE; MD = CD và

Hay AC = EM

Xét ?AEM và ?EAC, ta có :

AM = EC (cmt)

(cmt)

AC = EM (cmt)

Cho tam giác ABC vuông góc tại A có góc B = 53 0.

a) Tính góc C.

b) Trên cạnh BC, lấy điểm D sao cho BD = BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. cmr : ΔBEA = ΔBED.

c) Qủa C, vẽ đường thẳng vuông góc với BE tại H. CH cắt đường thẳng AB tại F. cm : ΔBHF = ΔBHC.

d) Cm : ΔBAC = ΔBDF và D, E, F thẳng hàng.

Giải.

Xét ΔBAC, ta có :

Xét ΔBEA và ΔBED, ta có :

BE cạnh chung.

(BE là tia phân giác của góc B)

BD = BA (gt)

Xét ΔBHF và ΔBHC, ta có :

BH cạnh chung.

(BE là tia phân giác của góc B)

(gt)

d. ΔBAC = ΔBDF và D, E, F thẳng hàng

xét ΔBAC và ΔBDF, ta có:

BC = BF (cmt)

Góc B chung.

BA = BC (gt)

Mà : (gt)

Nên : hay BD DF (1)

Mặt khác : (hai góc tương ứng của ΔBEA = ΔBED)

Mà : (gt)

Nên : hay BD DE (2)

Từ (1) và (2), suy ra : DE trùng DF

Hay : D, E, F thẳng hàng.

===================================

BÀI TẬP RÈN LUYỆN :

Cho ABC có Â = 90 0. Tia phân giác BD của góc B(D thuộc AC). Trên cạnh BC lấy điểm E sao cho BE = BA.

a) So sánh AD và DE

b) Chứng minh:

c) Chứng minh : AE BD

Cho ΔABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy điểm N sao cho M là trung điểm của AN.

a/. Ch/m :Δ AMB = ΔNMC

b/. Vẽ CD AB (D AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH BC (H BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD

Cho tam giác ABC có góc A =35 0 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 35 0 .

Cho tam giác ABC cân tại A và có .

Tính và

Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.

Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.

Chứng minh rằng : DE

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD

Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.

Cho tam giác ABC vuông tại A có . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Cho tam giác ABC (AB <AC). Tia phân giác của góc A cắt đường trung trực của BC tại I. kẻ IH vuông góc AB tại H. IK vuông góc AC tại K. chứng minh : BH = CK.

============================================

Thời gian làm bài 90 phút.

BÀI 1 : (2,5 điểm) tính bằng cách hợp lý :

a)

b)

c)

Tìm x, biết :

a)

b)

BÀI 3 : (1,5 điểm)

Ba đội cày làm việc trên ba cánh đồng có diện tích như nhau. Đội thứ nhất hoàn thành công việc trong 12 ngày. Đội thứ hai hoàn thành công việc trong 9 ngày. Đội thứ ba hoàn thành công việc trong 8 ngày. Hỏi mỗi đội có bao nhiêu máy cày biết Đội thứ nhất ít hơn Đội thứ hai 2 máy và năng suất của các máy như nhau.

Cho tam giác ABC vuông góc tại A có góc B = 53 0.

a) Tính góc C.

b) Trên cạnh BC, lấy điểm D sao cho BD = BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. cmr : ΔBEA = ΔBED.

c) Qủa C, vẽ đường thẳng vuông góc với BE tại H. CH cắt đường thẳng AB tại F. cm : ΔBHF = ΔBHC.

d) Cm : ΔBAC = ΔBDF và D, E, F thẳng hàng.

Giải Bài Tập Sgk Toán Lớp 7: Phần Hình Học

Giải bài tập SGK Toán lớp 7 Ôn tập cuối năm

Giải bài tập Toán lớp 7: Phần Hình học – Ôn tập cuối năm

Giải bài tập SGK Toán lớp 7: Phần Hình học – Ôn tập cuối năm với lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán lớp 7. Lời giải hay bài tập Toán 7 này gồm các bài giải tương ứng với từng bài học trong sách giúp cho các bạn học sinh ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn Toán. Mời các bạn tham khảo

Bài 1 (trang 90-91 SGK Toán 7 tập 2): Cho điểm M và hai đường thẳng a, b không song song với nhau (h.59).

a) Vẽ đường thẳng MH vuông góc với a (H ∈ a), MK vuông góc với b (K ∈ b). Nêu cách vẽ.

b) Qua M vẽ đường thẳng xx’ song song với a và đường thẳng yy’ song song với b. Nêu cách vẽ.

c) Nêu tên các cặp góc bằng nhau, bù nhau.

Hình 59

Lời giải:

a) Sử dụng êke

– Đặt một cạnh góc vuông đi qua điểm M, dịch chuyển cạnh còn lại trùng với đường thẳng a. Ta vẽ được đường thẳng MH ⊥ a.

– Làm tương tự ta vẽ được đường thẳng MK ⊥ b.

b) Sử dụng êke

– Đặt êke sao cho điểm góc vuông đi qua điểm M, dịch chuyển êke để một cạnh vuông trùng với MH, ta vẽ được đường thẳng xx’ ⊥ MH. Từ đó suy ra xx’

– Làm tương tự ta vẽ được đường thẳng yy’

c) Giả sử a cắt yy’ tại N và b cắt xx’ tại P.

Bài 2 (trang 91 SGK Toán 7 tập 2): Xem hình 60.

a) Giải thích vì sao a//b.

b) Tính số đo góc NQP.

Lời giải:

a) Hai đường thẳng a và b cùng vuông góc với đường thẳng MN nên a

b) Ta có:

là hai góc trong cùng phía tạo bởi đường thẳng PQ cắt hai đường thẳng song song nên chúng bù nhau.

Bài 3 (trang 91 SGK Toán 7 tập 2): Hình 61 cho biết a

(Hướng dẫn: Vẽ đường thẳng song song với đường thẳng a và đi qua điểm O).

Lời giải:

Vẽ đường thẳng xy đi qua O và song song với a. Ta có:

Bài 4 (trang 91 SGK Toán 7 tập 2): Cho góc vuông xOy, điểm A thuộc tia Ox, điểm B thuộc tia Oy. Đường trung trực của đoạn thẳng OA cắt Ox ở D, đường trung trực của đoạn thẳng OB cắt Oy ở E. Gọi C là giao điểm của hai đường trung trực đó. Chứng minh rằng:

a) CE = OD; b) CE ⊥ CD;

c) CA = CB; d) CA

e) Ba điểm A, B, C thẳng hàng.

Lời giải:

c) Chứng minh CA = CB

– Vì C nằm trên đường trung trực của OA nên CA = CO (3)

– Vì C nằm trên đường trung trực của OB nên CB = CO (4)

Từ (3) và (4) suy ra: CA = CB (đpcm).

Bài 5 (trang 91 SGK Toán 7 tập 2): Tính số đo x trong mỗi hình 62, 63, 64:

Lời giải:

Bài 6 (trang 92 SGK Toán 7 tập 2): Cho tam giác ADC (AD = DC) có góc ACD = 31 o. Trên cạnh AC lấy một điểm B sao cho góc ABD = 88 o. Từ C kẻ một tia song song với BD cắt tia AD ở E.

a) Hãy tính các góc DCE và DEC.

b) Trong tam giác CDE, cạnh nào lớn nhất? Tại sao?

Lời giải:

Bài 7 (trang 92 SGK Toán 7 tập 2): Từ một điểm M trên tia phân giác của góc nhọn xOy, kẻ đường vuông góc với cạnh Ox (tại A), đường thẳng này cắt cạnh Oy tại B.

a) Hãy so sánh hai đoạn thẳng OAvà MA.

b) Hãy so sánh hai đoạn thẳng OB và OM.

Lời giải:

Bài 8 (trang 92 SGK Toán 7 tập 2): Cho tam giác ABC vuông tại A; đường phân giác BE. Kẻ EH vuông góc với BC (H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:

a) ΔABE = ΔHBE.

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC.

d) AE < EC.

Lời giải:

Bài 9 (trang 92 SGK Toán 7 tập 2): Chứng minh rằng: Nếu tam giác ABC có đường trung tuyến xuất phát từ A bằng một nửa cạnh BC thì tam giác đó vuông tại A.

Ứng dụng: Một tờ giấy bị rách mép (h.65). Hãy dùng thước và compa dựng đường vuông góc với cạnh AB tại A.

Lời giải:

Chứng minh tam giác vuông:

Ứng dụng:

– Vẽ đường tròn (A, r) với r = AB/2; vẽ đường tròn (B, r).

– Gọi C là giao điểm của hai cung tròn nằm ở phía trong tờ giấy.

Thật vậy: ΔABD có AC là trung tuyến ứng với BD (BC = CD) và AC = BC = CD.

Bài 10 (trang 92 SGK Toán 7 tập 2): Cho hình 66. Không vẽ giao điểm của a, b, hãy nêu cách vẽ đường thẳng đi qua giao điểm này và điểm M.

Lời giải:

– Vẽ đường thẳng qua M vuông góc với a tại P cắt b tại Q.

– Vẽ đường thẳng qua M vuông góc với b tại R cắt a tại S.

– Vẽ đường thẳng qua M vuông góc với SQ.

Bài 11 (trang 92 SGK Toán 7 tập 2): Đố: Cho tam giác ABC. Em hãy tô màu để xác định phần bên trong của tam giác gồm các điểm M sao cho:

MA < MB < MC.

(Hướng dẫn: Trước tiên tô màu, để xác định các điểm M ở trong tam giác mà MA < MB; lần thứ hai là MB < MC. Phần trong tam giác được to màu 2 lần là phần phải tìm).

Lời giải:

– Điểm M nằm trong ΔABC sao cho MA < MB thì tô phần ΔABC thuộc nửa mặt phẳng bờ là trung trực của đoạn AB có chứa điểm A (phần màu đỏ).

– Điểm M nằm trong ΔABC sao cho MB < MC thì tô phần ΔABC thuộc nửa mặt phẳng bờ là đường trung trực của đoạn BC có chứa B (phần màu xanh). Phần tam giác được tô hai lần (đỏ và xanh) là phần chứa điểm M thỏa: MA < MB < MC.

Giải Sbt Toán 7 Ôn Tập Chương 1 Phần Hình Học

Giải SBT Toán 7 Ôn tập chương 1 phần Hình học

Bài 45 trang 113 sách bài tập Toán 7 Tập 1: Vẽ hình theo trình tự sau:

– Vẽ ba điểm không thẳng hàng A,B,C

– Vẽ đương thẳng d 1 đi qua B và song song với AC

Vì sao d1 vuông góc với d 2?

Lời giải:

Hình vẽ:

Bài 46 trang 113 sách bài tập Toán 7 Tập 1: 46. Hãy viết trình tự vẽ hình để có hình bên rồi đặt câu hỏi thích hợp:

Lời giải:

Vẽ Δ ABC

Vẽ đường thẳng d 1 đi qua B và vuông góc với AB

Vẽ đường thẳng d 2 đi qua C và vuông góc với AB

Gọi D là giao điểm của d 1 và d 2

Bài 47 trang 114 sách bài tập Toán 7 Tập 1: Vẽ hình theo trình tự sau:

– Vẽ tam giác Abc

– Vẽ đường thẳng đi qua A vuông goác với BC tại H

– Vẽ đường thẳng đi qua H vuông góc với AC tại T

– Vẽ đường thẳng đi qua T song song với BC

Lời giải:

Hình a sai ; Hình b đúng ; Hình c đúng ; Hình d sai

Tên các điểm được thể hiện trong hình dưới:

Bài 48 trang 114 sách bài tập Toán 7 Tập 1: Hình dưới cho biết ∠A =140 o;∠B =70 o;∠C =150 o

Chứng minh rằng Ax

Lời giải:

Kẻ tia Bz

(hai góc trong cùng phía)

Mà ∠(xAB) =140 o(gt)

∠(yCB) +∠(BCy’) =180 o(2 góc kề bù)

Từ (1) và (2) ta có: ∠(B 1 ) =∠(BCy’)

Suy ra: Cy’

Hay Cy

Lời giải:

Kẻ Bz

(2 góc trong cùng phía) (1)

∠A +∠B +C =360 o (gt)

Từ (1)và (2)suy ra :

∠(C 1 ) +∠∠C =180 o (hai góc kề bù) (4)

Suy ra: Cy’

Hay Cy

Bài I.1 trang 115 sách bài tập Toán 7 Tập 1: Cho hình bs 10(hai đường thẳng a, b song song với nhau và hai đường thẳng c, d song song với nhau; Dm, Cp, Bq và An tương ứng là các tia phân giác).

a) Chứng minh: An

b) Chứng minh: An vuông góc với Bq.

Lời giải:

a) Vẽ thêm các tia đối của các tia Dm, Cp, Bq và An.

Vẽ thêm các đường phân giác Ds và Ar của góc ∠D và ∠A.

Khi đó chứng minh được Cp song song với Ds.

Tương tự chứng minh được Ar song song với Dm.

Từ đó suy ra được: An

b) Sử dụng tính chất tia phân giác của hai góc bù nhau có được Ds, Dm vuông góc với nhau.

Từ đó suy ra được: An vuông góc với Bq.

Bài I.2 trang 115 sách bài tập Toán 7 Tập 1: Trong hình bs 11 ta có tam giác EFG và tia Fm.

Chứng minh rằng ∠GEm =∠ EFG + ∠EGF

Lời giải:

Từ điểm E vẽ đường thẳng song song với FG

Theo tính chất của hai đường thẳng song song ta có thêm ∠G 1 = ∠E 1; ∠F 2 = ∠E 2.

Từ đó suy ra:

Lại có ∠E 3 + ∠GEm = 180° suy ra: ∠GEm = ∠EFG + ∠EGF.

Bài I.3 trang 115 sách bài tập Toán 7 Tập 1: Cho hình bs 12

Chứng minh rằng đường thẳng Mu song song với đường thẳng Tz

Mỗi bài từ số I.4 đến số I.10 sau đây đều có bốn lựa chọn là (A), (B), (C) và (D) nhưng chỉ có một trong số đó là đúng. Hãy chọn phương án đúng.

Lời giải:

Bài này có nhiều cách giải, ta có thể làm theo cách sau đây.

Từ điểm M vẽ đường thẳng Mn song song với đường thẳng TN.

Khi đó, vì ∠TNM = 120° nên ∠NMn = 60°.

Vẽ Mu’ là tia đối của Mu, biết ∠uMN = 150° nên tính được ∠NMu’ = 30°.

Từ đó ∠nMu’ = ∠NMn + ∠NMu’ = 60° + 30° = 90°, tức là đường thẳng Mn vuông góc với đường thẳng uM.

Do đường thẳng Mn song song với đường thẳng TN nên suy ra đường thẳng TN cũng vuông góc với đường thẳng uM.

Từ đó Tz song song với Mu vì cùng vuông góc với TN.

Bài I.4 trang 115 sách bài tập Toán 7 Tập 1: Hai đường thẳng cắt nhau tạo nên 4 góc (không tính góc bẹt)

(A) đối đỉnh.

(B) đôi một đối đỉnh.

(C) đôi một không kề nhau đối đỉnh.

(D) đôi một chung đỉnh và không chung cạnh đối đỉnh.

Lời giải:

Chọn đáp án C

Bài I.5 trang 116 sách bài tập Toán 7 Tập 1: Hai góc xOy và x’O’y’ có xO

(A) Hai góc nhọn có cạnh tương ứng song song thì bằng nhau.

(B) Hai góc có cạnh tương ứng song song thì bù nhau.

(C) Hai góc có cạnh tương ứng song song thì bằng nhau.

(D) Hai góc có cạnh tương ứng song song thì kề nhau.

Lời giải:

Chọn đáp án A

Bài I.6 trang 116 sách bài tập Toán 7 Tập 1:

(A) Hai tia phân giác của cặp góc kề nhau thì vuông góc với nhau.

(B) Hai tia phân giác của cặp góc bù nhau thì vuông góc với nhau.

(C) Hai tia phân giác của cặp góc đối đỉnh thì vuông góc với nhau.

(D) Hai tia phân giác của cặp góc kề bù nhau thì vuông góc với nhau.

Lời giải:

Chọn đáp án D

Bài I.7 trang 116 sách bài tập Toán 7 Tập 1: Cho góc ∠xOy = 120 o. Kẻ Ot là tia phân giác của góc xOy. Kẻ tia Om nằm trong góc xOy và vuông góc với tia Ox. Kẻ tia On nằm trong góc xOy và vuông góc với tia Oy. Với hình vẽ được có bao nhiêu góc bằng 30 o ?

(A) 3;

(B) 4;

(C) 2;

(D) 1.

Lời giải:

Chọn đáp án B

Bài I.8 trang 116 sách bài tập Toán 7 Tập 1: Cho hình bs 14. Khi đó

(A) ∠N 1 và ∠M 1 là hai góc so le trong.

(B) ∠N 2 và ∠M 2 là hai góc đồng vị.

(C) ∠N 3 và ∠M 3 là hai góc so le trong.

(D) ∠N 4 và ∠M 4 là hai góc đồng vị.

Lời giải:

Chọn đáp án D

Bài I.9 trang 116 sách bài tập Toán 7 Tập 1: Cho hình bs 15 (hai đường thẳng FE, GH song song với nhau, hai đường thẳng FG, EH song song với nhau).

Khi đó, số đo của góc x bằng

(D) không tính được

Lời giải:

Chọn đáp án B

Bài I.10 trang 117 sách bài tập Toán 7 Tập 1: Cho hình bs 16 (đường thẳng t vuông góc với cả hai đường thẳng m, n). Khi đó, số đo của góc K 1 bằng

(D) không tính được.

Lời giải:

Chọn đáp án C

Tuyển Chọn Các Bài Toán Hay Về Hình Học Phẳng Có Lời Giải Hướng Dẫn (Tài Liệu Free)

Lời nói đầu Các kì thi HSG tỉnh và thành phố nhằm chọn ra đội tuyển tham dự kỳ thi học sinh giỏi Quốc gia trong năm học 2010 – 2011 đã diễn ra sôi nổi vào những ngày cuối năm trước và đã để lại nhiều ấn tượng sâu sắc. Bên cạnh những bất đẳng thức, những hệ phương trình hay những bài toán số học, tổ hợp, ta không thể quên được dạng toán vô cùng quen thuộc, vô cùng thú vị và cũng xuất hiện thường trực hơn cả, đó chính là những bài toán hình học phẳng. Nhìn xuyên suốt qua các bài toán ấy, ta sẽ phát hiện ra sự xuất hiện của những đường tròn, những tam giác, tứ giác; cùng với những sự kết hợp đặc biệt, chúng đã tạo ra nhiều vấn đề thật đẹp và thật hấp dẫn. Có nhiều bài phát biểu thật đơn giản nhưng ẩn chứa đằng sau

đó là những quan hệ khó và chỉ có thể giải được nhờ những định lý, những kiến thức ở mức độ nâng cao như: định lý Euler, đường tròn mixtilinear, định lý Desargues, điểm Miquel,… Rồi cũng có những bài phát biểu thật dài, hình vẽ thì phức tạp nhưng lại được giải quyết bằng một sự kết hợp ngắn gọn và khéo léo của những điều quen thuộc để tạo nên lời giải ấn tượng.

Nhằm tạo cho các bạn yêu Toán có một tài liệu tham khảo đầy đủ và hoàn chỉnh về những nội dung này, chúng tôi đã dành thời gian để tập hợp các bài toán, trình bày lời giải thật chi tiết và sắp xếp chúng một cách tương đối theo mức độ dễ đến khó về lượng kiến thức cần dùng cũng như hướng tiếp cận. Với hơn 50 bài toán đa dạng về hình thức và phong phú về nội dung, mong rằng “Tuyển chọn các bài toán hình học phẳng trong đề thi học sinh giỏi các tỉnh, thành phố năm học 2010 – 2011″ sẽ giúp cho các bạn có dịp thưởng thức, cảm nhận, ngắm nhìn nhiều hơn nét đẹp cực kì quyến rũ của bộ môn này!

Xin chân thành cảm ơn các tác giả đề bài, các thành viên của diễn đàn http://forum.mathscope.org đã gửi các đề toán và trình bày lời giải lên diễn đàn.

Tài liệu với dung lượng lớn có thể còn nhiều thiếu sót, rất mong bạn đọc góp thêm ý kiến để tiếp tục hoàn thiện cuốn tài liệu này. Các ý kiến đóng góp xin gửi vào hai hòm thư [email protected] hoặc [email protected] Cảm ơn các bạn.

Phan Đức Minh – Lê Phúc Lữ

3

Các kí hiệu và từ viết tắt sử dụng trong tài liệu

,R r Bán kính đường tròn ngoại tiếp, nội tiếp tam giác

đpcm Điều phải chứng minh 4

Phần một: Đề bài

Bài 2. Cho tam giác ABC có ACBC. Gọi 21, RR lần lượt là bán kính đường tròn ngoại tiếp các tam giác GACGBC, , trong đó G là trọng tâm tam giác ABC. Hãy so sánh 21, RR . (Đề thi chọn đội tuyển THPT chuyên Bến Tre, Bến Tre)

(Đề thi HSG Đồng Tháp, vòng 2)

và BD. Chứng minh rằng bán kính đường tròn ngoại tiếp các tam giác OPQOMQOMP ,, bằng nhau. (Đề thi chọn đội tuyển toán lớp 11 THPT Cao Lãnh, Đồng Tháp)

và BP. Chứng minh rằng MK BP. (Đề chọn đội tuyển THPT chuyên Lê Quý Đôn, Bình Định)

Bài 20. Gọi IG, là trọng tâm, tâm nội tiếp tam giác ABC. Đường thẳng qua G và song song với BC cắt ACAB, theo thứ tự tại bcCB , . Các điểm abcaBAAC ,,, được xác định tương tự. Các điểm cbaIII ,, theo thứ tự là tâm nội tiếp các tam giác ccbbaaBGAAGCCGB ,, . Chứng minh rằng cbaCIBIAI ,, đồng quy tại một điểm trên GI. (Đề thi chọn đội tuyển THPT chuyên ĐHSP HN) 7

đồng quy. (Đề kiểm tra đội tuyển toán THPT chuyên ĐHSP HN)

2. , ,M N P thẳng hàng. (Đề thi chọn đội tuyển toán lớp 11, THPT chuyên Lương Văn Tụy, Ninh Bình) 8

(Đề thi chọn đội tuyển THPT chuyên ĐHSP HN)

10

11

đồng quy. (Đề chi chọn đội tuyển Hải Phòng)

Bài 49. Cho hình thang ABCD

(Đề thi chọn đội tuyển THPT chuyên Đại học Vinh)

Phần hai: Lời giải

và BD. Chứng minh rằng bán kính đường tròn ngoại tiếp các tam giác OPQOMQOMP ,, bằng nhau. (Đề thi chọn đội tuyển toán lớp 11 THPT Cao Lãnh, Đồng Tháp) Lời giải. MQPOABDC

15

Tương tự, ta suy ra đpcm.

18

19

20

22

chuyển động trên một tia bất kì có gốc A và không nằm trên đường thẳng AB thì MN đi qua điểm D

được xác định như trên.

23

24

đồng quy. (Đề kiểm tra đội tuyển toán THPT chuyên ĐHSP HN) 25