Top 6 # Xem Nhiều Nhất Lời Giải Hay Toán Hình 9 Mới Nhất 4/2023 # Top Like | Asianhubjobs.com

Lời Giải Hay Toán 9 Sbt

Lớp 1-2-3

Lớp 1

Giải bài tập Toán lớp 1 Đề thi Toán lớp 1 Đề thi Tiếng Việt lớp 1 Đề thi Tiếng Anh lớp 1 Giải Tự nhiên và Xã hội 1 Giải VBT Tự nhiên và Xã hội 1 Giải VBT Đạo Đức 1

Lớp 2

Giải bài tập Toán lớp 2 Đề kiểm tra Toán 2 Giải bài tập sgk Tiếng Việt 2 Đề kiểm tra Tiếng Việt 2 Giải Tự nhiên và Xã hội 2

Vở bài tập

Giải VBT các môn lớp 2

Lớp 3

Soạn Tiếng Việt lớp 3 Văn mẫu lớp 3 Giải Toán lớp 3 Giải Tiếng Anh 3 Giải Tự nhiên và Xã hội 3 Giải Tin học 3

Vở bài tập

Giải SBT & VBT các môn lớp 3

Đề kiểm tra

Đề kiểm tra các môn lớp 3 Lớp 4

Sách giáo khoa

Soạn Tiếng Việt lớp 4 Văn mẫu lớp 4 Giải Toán lớp 4

Giải Tiếng Anh 4 mới Giải Khoa học 4 Giải Lịch Sử và Địa Lí 4

Giải Tin học 4 Giải Đạo Đức 4

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 4

Đề kiểm tra

Đề kiểm tra các môn lớp 4 Lớp 5

Sách giáo khoa

Soạn Tiếng Việt lớp 5 Văn mẫu lớp 5 Giải Toán lớp 5

Giải Tiếng Anh 5 mới Giải Khoa học 5 Giải Lịch Sử 5

Giải Địa Lí 5 Giải Đạo Đức 5 Giải Tin học 5

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 5

Đề kiểm tra

Đề kiểm tra các môn lớp 5 Lớp 6

Sách giáo khoa

Soạn Văn 6 (hay nhất) Soạn Văn 6 (ngắn nhất) Soạn Văn 6 (siêu ngắn) Soạn Văn 6 (cực ngắn) Văn mẫu lớp 6

Giải Toán 6 Giải Vật Lí 6 Giải Sinh 6 Giải Địa Lí 6 Giải Tiếng Anh 6

Giải Tiếng Anh 6 mới Giải Lịch sử 6 Giải Tin học 6 Giải GDCD 6 Giải Công nghệ 6

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 6

Đề kiểm tra

Đề kiểm tra các môn lớp 6

Chuyên đề & Trắc nghiệm

Chuyên đề & Trắc nghiệm các môn lớp 6 Lớp 7

Sách giáo khoa

Soạn Văn 7 (hay nhất) Soạn Văn 7 (ngắn nhất) Soạn Văn 7 (siêu ngắn) Soạn Văn 7 cực ngắn Văn mẫu lớp 7

Giải Toán 7 Giải Vật Lí 7 Giải Sinh 7 Giải Địa Lí 7 Giải Tiếng Anh 7

Giải Tiếng Anh 7 mới Giải Lịch sử 7 Giải Tin học 7 Giải GDCD 7 Giải Công nghệ 7

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 7

Đề kiểm tra

Đề kiểm tra các môn lớp 7

Chuyên đề & Trắc nghiệm

Chuyên đề & Trắc nghiệm các môn lớp 7 Lớp 8

Sách giáo khoa

Soạn Văn 8 (hay nhất) Soạn Văn 8 (ngắn nhất) Soạn Văn 8 (siêu ngắn) Soạn Văn 8 (cực ngắn) Văn mẫu lớp 8 Giải Toán 8

Giải Vật Lí 8 Giải Hóa 8 Giải Sinh 8 Giải Địa Lí 8 Giải Tiếng Anh 8

Giải Tiếng Anh 8 mới Giải Lịch sử 8 Giải Tin học 8 Giải GDCD 8 Giải Công nghệ 8

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 8

Đề kiểm tra

Đề kiểm tra các môn lớp 8

Chuyên đề & Trắc nghiệm

Chuyên đề & Trắc nghiệm các môn lớp 8 Lớp 9

Sách giáo khoa

Soạn Văn 9 (hay nhất) Soạn Văn 9 (ngắn nhất) Soạn Văn 9 (siêu ngắn) Soạn Văn 9 (cực ngắn) Văn mẫu lớp 9 Giải Toán 9

Giải Vật Lí 9 Giải Hóa 9 Giải Sinh 9 Giải Địa Lí 9 Giải Tiếng Anh 9

Giải Tiếng Anh 9 mới Giải Lịch sử 9 Giải Tin học 9 Giải GDCD 9 Giải Công nghệ 9

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 9

Đề kiểm tra

Đề kiểm tra các môn lớp 9

Chuyên đề & Trắc nghiệm

Chuyên đề & Trắc nghiệm các môn lớp 9 Lớp 10

Sách giáo khoa

Soạn Văn 10 (hay nhất) Soạn Văn 10 (ngắn nhất) Soạn Văn 10 (siêu ngắn) Soạn Văn 10 (cực ngắn) Văn mẫu lớp 10 Giải Toán 10 Giải Toán 10 nâng cao

Giải Vật Lí 10 Giải Vật Lí 10 nâng cao Giải Hóa 10 Giải Hóa 10 nâng cao Giải Sinh 10 Giải Sinh 10 nâng cao Giải Địa Lí 10

Giải Tiếng Anh 10 Giải Tiếng Anh 10 mới Giải Lịch sử 10 Giải Tin học 10 Giải GDCD 10 Giải Công nghệ 10

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 10

Đề kiểm tra

Đề kiểm tra các môn lớp 10

Chuyên đề & Trắc nghiệm

Chuyên đề & Trắc nghiệm các môn lớp 10 Lớp 11

Sách giáo khoa

Soạn Văn 11 (hay nhất) Soạn Văn 11 (ngắn nhất) Soạn Văn 11 (siêu ngắn) Soạn Văn 11 (cực ngắn) Văn mẫu lớp 11 Giải Toán 11 Giải Toán 11 nâng cao

Giải Vật Lí 11 Giải Vật Lí 11 nâng cao Giải Hóa 11 Giải Hóa 11 nâng cao Giải Sinh 11 Giải Sinh 11 nâng cao Giải Địa Lí 11

Giải Tiếng Anh 11 Giải Tiếng Anh 11 mới Giải Lịch sử 11 Giải Tin học 11 Giải GDCD 11 Giải Công nghệ 11

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 11

Đề kiểm tra

Đề kiểm tra các môn lớp 11

Chuyên đề & Trắc nghiệm

Chuyên đề & Trắc nghiệm các môn lớp 11 Lớp 12

Sách giáo khoa

Soạn Văn 12 (hay nhất) Soạn Văn 12 (ngắn nhất) Soạn Văn 12 (siêu ngắn) Soạn Văn 12 (cực ngắn) Văn mẫu lớp 12 Giải Toán 12 Giải Toán 12 nâng cao

Giải Vật Lí 12 Giải Vật Lí 12 nâng cao Giải Hóa 12 Giải Hóa 12 nâng cao Giải Sinh 12 Giải Sinh 12 nâng cao Giải Địa Lí 12

Giải Tiếng Anh 12 Giải Tiếng Anh 12 mới Giải Lịch sử 12 Giải Tin học 12 Giải GDCD 12 Giải Công nghệ 12

Sách/Vở bài tập

Giải SBT & VBT các môn lớp 12

Đề kiểm tra

Đề kiểm tra các môn lớp 12

Chuyên đề & Trắc nghiệm

Chuyên đề & Trắc nghiệm các môn lớp 12 IT

Ngữ pháp Tiếng Anh

Ngữ pháp Tiếng Anh cơ bản, nâng cao

Lập trình Java

Học lập trình Java

Phát triển web

Phát triển web

Lập trình C, C++, Python

Học lập trình C, C++, Python

Cơ sở dữ liệu

Cơ sở dữ liệu

Tuyển Chọn Các Bài Toán Hay Về Hình Học Phẳng Có Lời Giải Hướng Dẫn

Các kì thi HSG tỉnh và thành phố nhằm chọn ra đội tuyển tham dự kỳ thi học sinh giỏi Quốc gia trong năm học 2010 – 2011 đã diễn ra sôi nổi vào những ngày cuối năm trước và đã để lại nhi ề u ấn tượng sâu sắc. Bên cạnh những bất đẳng thức, những hệ phương trình hay những bài toán số học, tổ hợp, ta không thể quên được dạng toán vô cùng quen thuộc, vô cùng thú vị và cũng xuất hiện thường trực hơn cả, đó chính là những bài toán hình học phẳng. Nhìn xuyên suốt qua các bài toán ấy, ta sẽ phát hiện ra sự xuất hiện của những đường tròn, những tam giác, tứ giác; cùng với những sự k ế t hợp đặc biệt, chúng đã tạo ra nhi ề u vấn đ ề thật đẹp và thật hấp dẫn. Có nhi ề u bài phát biểu thật đơn giản nhưng ẩn chứa đằng sau đó là những quan hệ khó và chỉ có thể giải được nhờ những định lý, những ki ế n thức ở mức độ nâng cao như: định lý Euler, đường tròn mixtilinear, định lý Desargues, điểm Miquel,… Rồi cũng có những bài phát biểu thật dài, hình vẽ thì phức tạp nhưng lại được giải quy ế t bằng một sự k ế t hợp ngắn gọn và khéo léo của những đi ề u quen thuộc để tạo nên lời giải ấn tượng.

Nhằm tạo cho các bạn yêu Toán có một tài liệu tham khảo đầy đủ và hoàn chỉnh v ề những nội dung này, chúng tôi đã dành thời gian để tập hợp các bài toán, trình bày lời giải thật chi ti ế t và sắp x ế p chúng một cách tương đối theo mức độ dễ đ ế n khó v ề lượng ki ế n thức cần dùng cũng như hướng ti ế p cận. Với ề nội dung, mong rằng “ề u hơn nét đẹp cực kì quy ế n rũ của bộ môn này! hơn 50 bài toán đa dạng v ề hình thức và phong phú v Tuyển chọn các bài toán hình học phẳng trong đ ề thi học sinh giỏi các tỉnh, thành phố năm học 2010 – 2011” sẽ giúp cho các bạn có dịp thưởng thức, cảm nhận, ngắm nhìn nhi

Xin chân thành cảm ơn các tác giả đ ề bài, các thành viên của diễn đàn http://forum.mathscope.org đã gửi các đ ề toán và trình bày lời giải lên diễn đàn.

Cảm ơn các bạn.

Phan Đức Minh – Lê Phúc Lữ

Bài Tập Chương 1 Hình Lớp 9 Hay.

HÌNH HỌC LỚP 9

CHƯƠNG I : TAM GIÁC VUÔNG TÍNH ĐỘ DÀI ĐOẠN THẲNG TRONG TAM GIÁC VUÔNG biên soạn : Mẫn Ngọc Quang – Cầu Giấy – Hà Nội

Bài 8. Tính diện tích của 1 tam giác cân có chiều cao ứng với cạnh đáy bằng 10, chiều cao ứng với cạnh bên bằng 12.

BÀI TẬP CHỨNG MINH HỆ THỨC HÌNH HỌC

a) chúng tôi AN. AC

b) chúng tôi = chúng tôi + NA.NC

Bài 12. Cho hình vuông ABCD. Gọi M là điểm nằm giữa A và B. Tia DM cắt CB ở N. Kẻ D x vuông góc DN cắt BC tại E. Chứng minh rằng:

a) Tam giác DME cân.

b) tổng không đổi khi M di động trên cạnh AB.

a) Tính độ dài DE.

b) Các đường vuông góc với DE tại D và E lần lượt cắt BC tại M và Cmr : M, N lần lượt là trung điểm của BH và CH

c) Tính diện tích tứ giác DENM.

Bài 14.Tam giác ABC vuông tại A, góc B bằng 30 độ, BC.

a) Tính độ dài AB, AC.

b) Từ A kẻ AM, AM lần lượt vuông góc với các đường phân giác trong và ngoài của góc B. Cmr : MN song song BC và MN

c) Chứng minh tam giác MAB đồng dạng ABC. Tìm tỷ số đồng dạng?

Bài 15. cho hình thang vuông ABCD có góc A bằng góc D và bằng 90 độ. Hai đường chéo vuông góc với nhau tại O.

Cho biết

a) Tính BD

b) Tính khoảng cách từ O đến CD.

Tam giác ABC có góc B bằng 120 độ , BC = 12 , AB = 6 . Đường phân giác góc B cắt cạnh AC tại D

a) Tính độ dài DB

b) Gọi M là trung điểm BC. chứng minh rằng: AM vuông góc với DB

Giải 5Bài Toán Hay Từ Hình Thang Cân.doc

5 BÀI TOÁN HAY TỪ HÌNH THANG CÂN &TAM GIÁC

GIỚI THIỆU: Trong phần hình học lớp 8 và nhiều bài luyện tập chúng ta ít gặp “Hình thang cân”, nhưng hình thang cân trong thực tế có khá nhiều (Cái thang, mặt cắt của tòa tháp…). Một số bài tập khó giải về hình tam giác nếu biết ứng dụng tính chất hình thang sẽ thuận lợi hơn nhiều khi giải. NBS chọn 5 bài tiêu biểu giới thiệu để các bạn tham khảo. NBS tạm gọi 3 bài đầu như “Bổ đề”

Từ định nghĩa:(*)Hình thang là tứ giác có 2 cạnh đối diện song song nhau.(**)Hình thang cân là hình thang có:2 góc ở đáy bằng nhau ((C = (D)2 cạnh bên bằng nhau ( AC = BD)2 đường chéo bằng nhau (AD =CB)

1./BÀI TOÁN 1 (Bổ đề 1a) “Trong một hình thang cân, hai đường trung trực của 2 đáy trùng nhau”

CM: Có hình thang cân ABCD; Kéo dai 2 cạnh bênCho cắt nhau tại S, ( Ta có 2 tam giác cân (SAB và (SCD (đương nhiên vì (SCD = (CDS và (SAB=(SBA)– Đường cao SE của (SAB vừa là trung tuyến vừa là trung trực của AB, vừa là phân giác của (S– Đường cao SF của (SCD vừa là trung tuyến vừa là trung trực của CD, vừa là phân giác của (S( Vậy Trung trực Em của (SAB trùng trung trực Fm của (SCD (ĐPCM)

2/. BÀI TOÁN 2 (Bổ đề 1b) “Trong một tứ giác, nếu hai trung trực của 2 cạnh đối nhau không trùng nhau thì tứ giác đó không phải là hình thang cân”

CM: Thực chất Bổ đề 1b là phần đảo của 1a, tuy nhiên chứng minh 1b không đơn giản như CM cho 1a. Hãy xét 2 trường hợp:TH1: Giải sử-Tứ giác ABCD có 2 đường trung trực Em

TH 2: Giải sử :Tứ giác ABCD có trung trực Em cắt trung trực Fn tại P ( ta có (EPF mà nếu kéo dài AB và CD thì AB sẽ cắt CD tại một điểm Q để (AQD = (EPF(2 góc có cặp cạnh vuông góc nhau) ( AB không

3/. BÀI TOÁN 3 (Bổ đề 2)

Cho tứ giác ABCD có 2 đường chéo AC =BD, kèm theo:a/ Nếu 2 cạnh bên AD =BC thì tứ giác đó là hình thang cânb/ Nếu 2 góc ở đáy (D =(C thì tứ giác đó là hình thang cân*CM: a/Theo điều kiện bài toán 2 tam giác (ADC và (BDC có: AC=BD; AB=BC; DC chung ((ADC = (BDC((A1 = (B1; (D2 = (C2 (Tứ giác ABCD nội tiếp đường tròn ((D2 = (B2 (chắn 2 cung AD=BC) ( AB//DC (góc so le bằng nhau). ( Theo định nghia(**)ABCD là hình thang cân (đpcm)

b/ Trên 2 đường chéo AC, BD dựng 2 đường trung trực, 2 trung trực cắt nhau tại O ( O cách đều A,B, C, D ( vì AC=BD tạo ra 4 tam giác vuông bằng nhau)( Tứ giác ABCD nội tiếp được trong đường tròn O.((A2=(D2 (cùng chắn cung BC) mà (A2=(B2 ((IAB cân) ((D2 =(B2( AB//DC( ABCD là hình thang; và vì có (D = (C nên: ABCD là hình thang cân (đpcm)

4/. BÀI TOÁN 4Chứng minh rằng: Một tam giác có 2 đường phân giác bằng nhau thì tam giác đó là tam giác cân(Đây là bài toán rất hay, đã từng được nhiều thế hệ HS (lớp 6-7 – hệ GD cũ và các lớp 8 – 9 – hệ GD mới) trăn trở tìm khá nhiều cách CM mà cách nào cũng phải có tìm tòi sáng tạo (*(. Nhân chuyên đề “hình thang cân” NBS giới thiệu 3 cách CM sau)

Cách thứ nhất:Từ dữ liệu ít ỏi: (