Top 13 # Xem Nhiều Nhất Toán Nâng Cao Lớp 6 Có Lời Giải Mới Nhất 6/2023 # Top Like | Asianhubjobs.com

Các Dạng Toán Nâng Cao Lớp 6 Có Lời Giải

A. Lý thuyết 1. Tập hợp

Tập hợp là khái niệm cơ bản thường dùng trong toán học và cuộc sống. Ta hiểu tập hợp thông qua các ví dụ.

Ví dụ:

+ Tập hợp các đồ vật (sách, bút) đặt trên bàn.

+ Tập hợp học sinh lớp 6A.

+ Tập hợp các số tự nhiên lớn hơn 7.

+ Tập hợp các chữ cái trong hệ thống chữ cái Việt Nam.

2. Cách viết tập hợp

+ Tên tập hợp được viết bằng chữ cái in hoa như: A, B, C,…

+ Để viết tập hợp thường có hai cách viết:

* Liệt kê các phần tử của tập hợp

Ví dụ: Gọi A là tập hợp các số tự nhiên nhỏ hơn 5

A = {1; 2; 3; 4}

* Theo tính chất đặc trưng cho các phần tử của tập hợp đó.

N là tập hợp các số tự nhiên

Các số 0; 1; 2; 3; 4 là các phần tử của tập hợp A

+ Kí hiệu:

* 2 ∈ A đọc là 2 thuộc hoặc là 2 thuộc phần tử của A.

* 6 ∉ A đọc là 6 không thuộc A hoặc là 6 không là phần tử của A.

Chú ý:

* Các phần tử của một tập hợp được viết trong hai dấu ngoặc nhọn { }, ngăn cách nhau bởi dấu “;” (nếu có phần tử số) hoặc dấu “,” nếu không có phần tử số.

* Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý.

* Ngoài ra ta còn minh họa tập hợp bằng một vòng tròn kín, mỗi phần tử của tập hợp được biểu diễn bằng 1 dấu chấm bên trong vòng tròn kín đó.

Ví dụ: Tập hợp B trong hình vẽ là B = {0; 2; 4; 6; 8}

B. Bài tập

Câu 1: Cho tập hợp A là các chữ cái trong cụm từ: “Thành phố Hồ Chí Minh”.

a) Hãy liệt kê các phần tử trong tập hợp A.

b) Trong các kết luận sau, kết luận là đúng?

+ b thuộc tập hợp A

+ t thuộc tập hợp A

+ m thuộc tập hợp A.

Hướng dẫn giải:

a) Các phần tử trong tập hợp A là A = {t; h; a; n; p; o; c; i; m}

b) Trong các kết luận, các kết luận đúng là

+ t thuộc tập hợp A

+ m thuộc tập hợp A.

Câu 2: Cho tập hợp A = {1; 2; 3; 4; 5; 6} và B = {1; 3; 5; 7; 9}

a) Viết tập hợp C gồm các phần tử thuộc A nhưng không thuộc B

Hướng dẫn giải:

a) Các phân tử thuộc A không thuộc B là 2; 4; 6

Nên tập hợp C là C = {2; 4; 6}

b) Các phần tử vừa thuộc A vừa thuộc B là 1; 3; 5

Nên tập hợp D là D = {1; 3; 5}

c) Các phần tử thuộc B nhưng không thuộc A là 7; 9

Nên tập hợp E là E = {7; 9}

tag: những phát triển về lũy thừa kì tìm sách đáp án so sánh tap nhanh chia hết bổ trợ chương co dap an violet ôn hè lên pdf

Toán Lớp 2 Nâng Cao Có Lời Giải

Tổng hợp các bài toán lớp 2 nâng cao có lời giải được biên soạn chi tiết nhất của kênh youtube : Học Toán Online.

Bài 1. Nhà Hà có số con gà bằng số con chó, tổng số chân gà và chó là 48 chân. Hỏi nhà Hà có bao nhiêu con gà, bao nhiêu con chó.

Bài giải

Một cặp gồm 1 con gà và 1 con chó có số chân là :

2 + 4 = 6 (chân)

Do số gà bằng số chó nên nhà Hà có số cặp gà và chó là :

48 : 6 = 8 (cặp)

Vậy nhà Hà có 8 con gà và 8 con chó.

Đáp số : Gà : 8 con ; Chó : 8 con.

Xem toàn bộ toán nâng cao lớp 2

Bài 2. Có 8 can dầu mỗi can chứa 5 lít. Hỏi với số dầu đó mà đựng vào các can, mỗi can 4 lít thì cần bao nhiêu can?

Bài 3. Toán nâng cao lớp 2 có lời giải – tính tuổi.

Hiện nay anh 22 tuổi, em 16 tuổi. Tính tổng số tuổi của hai anh em khi em bằng tuổi anh hiện nay?

Xem video học toán lớp 2 sách giáo khoa. Gợi ý :

-Hiện nay anh hơn em : 22 – 16 = 6(tuổi).

-Khi em bằng tuổi anh hiện nay, tức là em 22 tuổi, thì anh vấn hơn em là 6 tuổi.

-Lúc đó tuổi của anh là : 22 + 6 = 28 (tuổi)

-Vậy tổng số tuổi của hai anh em lúc đó là : 22 + 28 = 50 (tuổi)

Bài giải

Anh hơn em số tuổi là :

22 – 16 = 6 (tuổi)

Khi em bằng tuổi anh hiện nay (khi em 22 tuổi) thì tuổi của anh lúc đó là :

22 + 6 = 28 (tuổi)

Tổng số tuổi của hai anh em lúc đó là :

22 + 28 = 50 (tuổi)

Đáp số : 50 tuổi.

Bài 4. Hãy tìm số có ba chữ số mà hiệu của chữ số hàng chục và chữ số hàng trăm bằng 1, còn hiệu của chữ số hàng chục và hàng đơn vị bằng 9

Bài giải

-Hiệu của hai chữ số bằng 9 chỉ có thể là : 9 – 0 = 9

-Vậy chữ số hàng chục bằng 9, chữ số hàng đơn vị bằng 0

-Hiệu của chữ số hàng chục và chữ số hàng trăm bằng 1

vậy chữ số hàng trăm là :

9 – 1 = 8

Số cần tìm là : 890

Câu 5. Dùng 31 chữ số để viết các số liền nhau thành dãy số : 1 ; 2 ; 3 ; … ; b.

b là số cuối cùng. Hỏi b là số bao nhiêu?

500 Bài Toán Nâng Cao Lớp 5 Có Lời Giải

500 bài Toán nâng cao lớp 5 có lời giải

Bồi dưỡng học sinh giỏi Toán lớp 5

Bài Toán nâng cao lớp 5 có đáp án

Giải bài tập SGK Toán lớp 5

50 bài toán bồi dưỡng học sinh giỏi lớp 5 (có lời giải)

15 đề luyện thi học sinh giỏi môn Toán lớp 5

Bộ đề bồi dưỡng học sinh giỏi môn Tiếng Việt lớp 5

500 BÀI TOÁN LỚP 5 NÂNG CAO CHỌN LỌC

Bài 1: Số có 1995 chữ số 7 khi chia cho 15 thì phần thập phân của thương là bao nhiêu?

Giải: Gọi số có 1995 chữ số 7 là A. Ta có:

Một số chia hết cho 3 khi tổng các chữ số của số đó chia hết cho 3. Tổng các chữ số của A là 1995 x 7. Vì 1995 chia hết cho 3 nên 1995 x 7 chia hết cho 3.

Do đó A = 777…77777 chia hết cho 3.

1995 chữ số 7

Một số hoặc chia hết cho 3 hoặc chia cho 3 cho số dư là 1 hoặc 2.

Chữ số tận cùng của A là 7 không chia hết cho 3, nhưng A chia hết cho 3 nên trong phép chia của A cho 3 thì số cuối cùng chia cho 3 phải là 27. Vậy chữ số tận cùng của thương trong phép chia A cho 3 là 9, mà 9 x 2 = 18, do đó số A/3 x 0,2 là số có phần thập phân là 8.

Vì vậy khi chia A = 777…77777 cho 15 sẽ được thương có phần thập phân là 8.

1995 chữ số 7

Nhận xét: Điều mấu chốt trong lời giải bài toán trên là việc biến đổi A/15 = A/3 x 0,2. Sau đó là chứng minh A chia hết cho 3 và tìm chữ số tận cùng của thương trong phép chia A cho 3. Ta có thể mở rộng bài toán trên tới bài toán sau:

Bài 2 (1*): Tìm phần thập phân của thương trong phép chia số A cho 15 biết rằng số A gồm n chữ số a và A chia hết cho 3?

Nếu kí hiệu A = chúng tôi và giả thiết A chia hết cho 3 (tức là n x a chia hết cho 3), thì khi đó tương tự như cách giải bài toán n chữ số a

1 ta tìm được phần thập phân của thương khi chia A cho 15 như sau:

– Với a = 1 thì phần thập phân là 4 (A = 111…1111, với n chia hết cho 3) n chữ số 1

– Với a = 2 thì phần thập phân là 8 (A = 222…2222, với n chia hết cho 3). n chữ số 2

– Với a = 3 thì phần thập phân là 2 (A = 333…3333 , với n tùy ý). n chữ số 3

– Với a = 4 thì phần thập phân là 6 (A = 444…4444 , với n chia hết cho 3) n chữ số 4

– Với a = 5 thì phần thập phân là 0 (A = 555…5555, với n chia hết cho 3). n chữ số 5

– Với a = 6 thì phần thập phân là 4 (A = 666…6666, với n tùy ý) n chữ số 6

– Với a = 7 thì phần thập phân là 8 (A = 777…7777, với n chia hết cho 3) n chữ số 7

– Với a = 8 thì phần thập phân là 2 (A = 888…8888, với n chia hết cho 3) n chữ số 8

– Với a = 9 thì phần thập phân là 6 (A = 999…9999, với n tùy ý). n chữ số 9

Trong các bài toán 1 và 2 (1*) ở trên thì số chia đều là 15. Bây giờ ta xét tiếp một ví dụ mà số chia không phải là 15.

Bài 4: Cho mảnh bìa hình vuông ABCD. Hãy cắt từ mảnh bìa đó một hình vuông sao cho diện tích còn lại bằng diện tích của mảnh bìa đã cho.

Bài giải:

Theo đầu bài thì hình vuông ABCD được ghép bởi 2 hình vuông nhỏ và 4 tam giác (trong đó có 2 tam giác to, 2 tam giác con). Ta thấy có thể ghép 4 tam giác con để được tam giác to đồng thời cũng ghép 4 tam giác con để được 1 hình vuông nhỏ. Vậy diện tích của hình vuông ABCD chính là diện tích của 2 + 2 x 4 + 2 x 4 = 18 (tam giác con). Do đó diện tích của hình vuông ABCD là:

18 x (10 x 10) / 2 = 900 (cm 2)

Bài 5: Tuổi ông hơn tuổi cháu là 66 năm. Biết rằng tuổi ông bao nhiêu năm thì tuổi cháu bấy nhiêu tháng. Hãy tính tuổi ông và tuổi cháu (tương tự bài Tính tuổi – cuộc thi Giải toán qua thư TTT số 1).

Giải

Giả sử cháu 1 tuổi (tức là 12 tháng) thì ông 12 tuổi.

Lúc đó ông hơn cháu: 12 – 1 = 11 (tuổi)

Nhưng thực ra ông hơn cháu 66 tuổi, tức là gấp 6 lần 11 tuổi (66 : 11 = 6).

Do đó thực ra tuổi ông là: 12 x 6 = 72 (tuổi)

Còn tuổi cháu là: 1 x 6 = 6 (tuổi)

thử lại 6 tuổi = 72 tháng; 72 – 6 = 66 (tuổi)

Đáp số: Ông: 72 tuổi

Cháu: 6 tuổi

Bài 6: Một vị phụ huynh học sinh hỏi thầy giáo: “Thưa thầy, trong lớp có bao nhiêu học sinh?” Thầy cười và trả lời:”Nếu có thêm một số trẻ em bằng số hiện có và thêm một nửa số đó, rồi lại thêm 1/4 số đó, rồi cả thêm con của quý vị (một lần nữa) thì sẽ vừa tròn 100″. Hỏi lớp có bao nhiêu học sinh?

Giải:

Theo đầu bài thì tổng của tất cả số HS và tất cả số HS và 1/2 số HS và 1/4 số HS của lớp sẽ bằng: 100 – 1 = 99 (em)

Để tìm được số HS của lớp ta có thể tìm trước 1/4 số HS cả lớp.

Giả sử 1/4 số HS của lớp là 1 em thì cả lớp có 4 HS

Vậy: 1/4 số HS của lứop là: 4 : 2 = 2 (em).

Suy ra tổng nói trên bằng : 4 + 4 + 2 + 1 = 11 (em)

Nhưng thực tế thì tổng ấy phải bằng 99 em, gấp 9 lần 11 em (99 : 11 = 9)

Suy ra số HS của lớp là: 4 x 9 = 36 (em)

Thử lại: 36 + 36 = 36/2 + 36/4 + 1 = 100

Đáp số: 36 học sinh.

Bài 7: Tham gia hội khoẻ Phù Đổng huyện có tất cả 222 cầu thủ thi đấu hai môn: Bóng đá và bóng chuyền. Mỗi đội bóng đá có 11 người. Mỗi đội bóng chuyền có 6 người. Biết rằng có cả thảy 27 đội bóng, hãy tính số đội bóng đá, số đội bóng chuyền.

Giải

Giả sử có 7 đội bóng đá, thế thì số đội bóng chuyền là:

27 – 7 = 20 (đội bóng chuyền)

Lúc đó tổng số cầu thủ là: 7 x 11 + 20 x 6 = 197 (người)

Nhưng thực tế có tới 222 người nên ta phải tìm cách tăng thêm: 222 – 197 = 25 (người), mà tổng số đội vẫn không đổi.

Ta thấy nếu thay một đội bóng chuyền bằng một đội bóng đá thì tổng số đội vẫn không thay đổi nhưng tổng số người sẽ tăng thêm: 11 – 6 = 5 (người)

Vậy muốn cho tổng số người tăng thêm 25 thì số dội bống chuyền phải thay bằng đọi bóng đá là:

25 : 5 = 3 (đội)

Do đó, số đội bóng chuyền là: 20 – 5 = 15 (đội)

Còn số đội bóng đá là: 7 + 5 = 12 (đội)

Đáp số: 12 đội bóng đá, 15 đội bóng chuyền.

Sách Bồi Dưỡng Các Dạng Toán Nâng Cao Lớp 6 Có Lời Giải

Nhằm giúp các học sinh, phụ huynh và giáo viên có thêm tài liệu tự ôn tập, tự kiểm tra và tự đánh giá quá trình học tập. Tác giả Nguyễn Đức Tấn đã cho ra đời bộ 100 Đề Kiểm Tra Môn Toán Lớp 6 gồm 4 phần:

Cuốn sách bồi dưỡng toán 6 này giúp bé phát triển trí não, tư duy sáng tạo với 3 phần chính: A. Kiến thức cần nhớ: Phần này tóm tắt những kiến thức cơ bản, những kiến thức bổ sung cần thiết để làm cơ sở giải các bài tập thuộc dạng chuyên đề. B. Một số ví dụ: Phần này đưa ra những ví dụ chọn lọc, tiêu biểu chứa đựng những kỹ năng và phương pháp luận mà chương trình đòi hỏi. C. Bài tập vận dụng: Đưa ra một hệ thống các bài tập được phân loại theo các dạng toán, tăng dần độ khó cho học sinh khá giỏi. Có những bài tập được trích từ những đề thi học sinh giỏi toán trong và ngoài nước.

Cuốn sách tổng hợp các mẫu đề kiểm tra 15 phút, 45 phút và kiểm tra học kì môn Toán mô tả chuẩn nhất theo ma trận đề thi của Bộ GD&ĐT sẽ giúp các em học sinh lớp 6 làm quen với các đề thi cho từng chương kiến thức, từ đó giúp các em đánh giá được chính xác năng lực để lấp lỗ hổng kiến thức kịp thời. Đây được các giáo viên và chuyên đánh giá là một trong những cuốn sách tham khảo môn toán dành cho học sinh lớp 6 hay nhất.

Những đặc điểm hấp dẫn từ cuốn sách: ► Bộ đề kiểm tra 15 phút – 1 tiết – học kì đầy đủ nhất với 2 phần tự luận và trắc nghiệm với cấp độ từ cơ bản đến nâng cao giúp các em học sinh thực hành và làm quen với các dạng bài sẽ có trong đề thi.► Bám sát cấu trúc kiến thức và chuẩn theo ma trận đề thi của Bộ GD&ĐT.► Lời giải và hướng dẫn giải chi tiết, giúp các em học sinh tự chấm điểm để có thể đánh giá được năng lực, thấy được lỗ hổng kiến thức để kịp thời bù đắp► Tập hợp rất nhiều mẹo giải hay, dễ dàng vận dụng, dễ dàng ghi nhớ giúp học sinh hướng đến phương pháp giải nhanh và đạt điểm cao hơn► Hệ thống đề kiểm tra được sắp xếp theo độ khó tăng dần, phù hợp với mọi đối tượng học sinh có học lực từ trung bình – khá đến giỏi.

Cuốn sách được biên soạn dựa trên những hiểu biết chuyên môn của các thành viên nhóm Hồng Đức, những người có trình độ sư phạm cao, và có nhiều năm kinh nghiệm giảng dạy toán ở cấp THCS. Tất cả chỉ để phù hợp với những thay đổi trong công cuộc cải cách giáo dục của nước ta hiện nay.

Một trong những quyển sách tham khảo toán dành bổ ích dành cho học sinh lớp 6 giúp các em có thể tự rèn luyện, củng cố kiến thức, bồi dưỡng và kiểm tra kiến thức Toán của bản thân, là nguồn tài liệu giúp phụ huynh có thể hướng dẫn cho con tại nhà một cách dễ dàng, hiệu quả, đồng thời theo dõi tiến độ học cũng như năng lực học tập của con.

Cuốn sách này sẽ là công cụ hỗ trợ đắc lực cho quá trình học toán của các em lớp 6 được thiết kế nhỏ gọn dễ dàng sử dụng, quyển sách này giúp các em học sinh lớp 6 sử dụng ôn tập nắm vững kiến thức toán 6.

Tác giả Vũ Thế Hựu đã chọn lọc và tập hợp những công thức đầy đủ nhất cho kiến thức môn Toán 6 dựa vào chương trình mới làm chuẩn kiến thức kĩ năng, trình bày tóm lược, khái quát, mềm dẻo các kiến thức và kĩ năng cơ bản trong sách giáo khoa mới, cung cấp thêm những kiến thức cần thiết về môn học mà sách giáo khoa không có điều kiện phản ánh hoặc phản ánh chưa đầy đủ, giúp mở rộng và nâng cao hiểu biết cho học sinh.

Theo lời đánh giá của một chuyên gia hàng đầu về toán học, đây là một cuốn sách không-thể-tin-nổi của của tác giả Trần Xuân Tiếp, Phạm Hoàng. Quyển sách mang lại cho các em học sinh cái nhìn tổng quát về môn toán lớp 6, mang toán học tiếp cận đến các em một cách tự nhiên và gần gũi nhất.

Bài học được phân chia theo từng tiết học, mỗi tiết bao gồm tóm tắt các kiến thức cần nhớ, bài tập ví dụ, hướng dẫn giải chi tiết và các bài tập thực hành. Bài tập được sắp xếp theo trình độ từ dễ đến khó, từ cơ bản đến nâng cao, trong đó có 30% bài tập dành cho các học sinh khá-giỏi giúp các em nắm kiến thức vững vàng hơn.

Cuốn sách tham khảo toán lớp 6 này có cấu trúc bao gồm hai phần: ♦ Phần I – Phần Đại số♦ Phần II – Hình học Mỗi phần có các kiến thức cơ bản và các bài tập nâng cao giúp các em tự rèn luyện kiến thức và kỹ năng giải bài tập toán 6, vận dụng linh hoạt vào các bài toán chuyên sâu với những phương pháp học nhanh nhớ lâu, làm cơ sở cho các kiến thức cao hơn sau này.

Bộ Phương Pháp Tư Duy Tìm Cách Giải Toán 6 (2 cuốn đại số và hình học)

Bộ sách ôn tập toán lớp 6 này được biên soạn theo từng chương, từng mục của sách giáo khoa hiện hành giúp học sinh củng cố các kiến thức cơ bản, rèn luyện cho các em kĩ năng giải toán và trình bày rõ ràng cách giải bài, là cẩm nang giúp phụ huynh hỗ trợ con em mình tại nhà. Ngoài ra, tác giả còn sưu tầm nhiều bài toán thi vào các trường trong và ngoài nước trong tài liệu toán học.

Vẽ thêm hình phụ là một sự sáng tạo “nghệ thuật” tùy theo yêu cầu của một bài toán cụ thể. Bởi vì việc vẽ thêm hình phụ cần đạt được mục đích là tạo điều kiện để giải được bài toán thuận lợi chứ không phải là công việc tùy tiện… Hơn nữa, việc vẽ thêm hình phụ phải tuân theo các phép dựng hình cơ bản và các bài toán dựng hình cơ bản giúp giải quyết ba vấn đề cơ bản sau: ► Giúp giải được một số bài toán hình học mà nếu không vẽ thêm hình phụ sẽ bế tắc.► Trình bày lời giải một số bài toán hình học được gọn hơn, hay hơn.► Phát hiện những vấn đề mới chưa được học bằng những vốn kiến thức hạn chế mà mặc dầu sau này các vấn đề đó khi học đến đều có thể là đơn giản.

Quyển sách gồm 3 phần chính:Qua phần giới thiệu vừa rồi, Newshop hy vọng bạn đọc đã lựa chọn được những cuốn► Phần I: Các kĩ thuật vẽ thêm hình phụ (kĩ thuật về Điểm, Đường thẳng, Tam giác vuông cân-tam giác đều-hình bình hành-đường tròn, Hình duy nhất).► Phần II: Các bài toán rèn luyện.► Phần II: trao đổi thêm về hình vẽ phụ (các bài viết được chọn đăng trên các tạp chí. Toán học và tuổi trẻ, Toán tuổi thơ, Thế giới trong ta, các bài viết của các thầy giáo và các bạn học sinh đã từng cùng tôi giảng dạy, nghiên cứu và học tập,…) sách bồi dưỡng môn toán dành cho học sinh lớp 6 hay và phù hợp, giúp các bạn học sinh có thể dễ dàng, thuận tiện trong quá trình tự học tập và rèn luyện tại nhà. Đây hứa hẹn là nguồn tài liệu hữu ích đối với các giáo viên bậc THCS và cả các phụ huynh trong việc dạy kèm cho con. Trong quyển sách các bạn sẽ nhận ra rất nhiều bài toán có lời giải mới rất đặc sắc và nhiều bài toán thi chọn học sinh giỏi THPT được giải bằng kiến thức THCS thật ngắn gọn và sáng tạo. Các bạn sẽ nhận ra rằng quyển sách có các bài toán được vận dụng các kĩ thuật vẽ thêm hình phụ khác nhau nên cho cách giải khác nhau, điều này nhằm tăng thêm tính hấp dẫn của việc vẽ thêm hình phụ và đồng thời giúp tạo niềm tin về tính đúng đắn của các cách giải của bài toán.